极摩尔圆法计算二维平均运动学涡度

刘江, 张进江, 张波. 极摩尔圆法计算二维平均运动学涡度[J]. 地质科学, 2012, 47(1): 13-21.
引用本文: 刘江, 张进江, 张波. 极摩尔圆法计算二维平均运动学涡度[J]. 地质科学, 2012, 47(1): 13-21.
Liu Jiang, Zhang Jinjiang, Zhang Bo. 2-D mean vorticity numbers calculated from construction of polar Mohr diagram[J]. Chinese Journal of Geology, 2012, 47(1): 13-21.
Citation: Liu Jiang, Zhang Jinjiang, Zhang Bo. 2-D mean vorticity numbers calculated from construction of polar Mohr diagram[J]. Chinese Journal of Geology, 2012, 47(1): 13-21.

极摩尔圆法计算二维平均运动学涡度

详细信息
    通讯作者: 张进江,男, 1964年9月生,博士,教授,构造地质学专业。E-mail: zhjj@pku.edu.cn
  • 中图分类号: P542

2-D mean vorticity numbers calculated from construction of polar Mohr diagram

More Information
    Corresponding author: Zhang Jinjiang
  • 通过有限应变椭圆长短轴比(Rs)和长轴与剪切面夹角(α)构建极摩尔圆,本文计算得出二维平面应变平均运动学涡度(Wm)计算公式为Wm=cos ,并以此绘制了Wm关于Rs和α的等值线投影图。公式计算和有限应变数值投影都是计算平均运动学涡度的简捷有效的方法。极摩尔圆计算提供了判定剪切类型(简单剪切,纯剪切,减薄一般剪切,增厚一般剪切)的两种方法:α值判定瞬时应变剪切类型; Rs×tan2α值判定有限应变剪切类型。
  • 加载中
  • [1]

    Bailey C M and Eyster E L.2003.General shear deformation in the Pinaleno Mountains metamorphic core complex,Arizona.Journal of Structural Geology, 25 (11): 1883-1892.

    [2]

    Bobyarchick A R.1986.The eigenvalues of steady state flow in Mohr space.Tectonophysics, 122 (1-2): 35-51.

    [3]

    Fossen H and Tikoff B.1993.The deformation matrix for simultaneous simple shearing,pure shearing and volume change,and its application to transpression-transtension tectonics.Journal of Structural Geology, 15 (3-5): 413-422.

    [4]

    Genier F and Epard J.2007.The Fry method applied to an augen orthogneiss:Problems and results.Journal of Structural Geology, 29 (2): 209-224.

    [5]

    Jessup M J,Law R D and Frassi C.2007.The Rigid Grain Net(RGN):An alternative method for estimating mean kinematic vorticity number(Wm).Journal of Structural Geology, 29 (3): 411-421.

    [6]

    Johnson S E,Lenferink H J,Price N A,Marsh J H,Koons P O,West D P and Beane R.2009.Clast-based kinematic vorticity gauges:The effects of slip at matrix/clast interfaces.Journal of Structural Geology, 31 (11): 1322-1339.

    [7]

    Law R D,Searle M P and Simpson R L.2004.Strain,deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab,Everest Massif,Tibet.Journal of the Geological Society, 161 (2): 305-320.

    [8]

    Li C C and Jiang D Z.2011.A critique of vorticity analysis using rigid clasts.Journal of Structural Geology, 33 (3): 203-219.

    [9]

    Means W D,Hobbs B E,Lister G S and Williams P F.1980.Vorticity and non-coaxiality in progressive deformations.Journal of Structural Geology, 2 (3): 371-378.

    [10]

    Michibayashi K and Murakami M.2007.Development of a shear band cleavage as a result of strain partitioning.Journal of Structural Geology, 29 (6): 1070-1082.

    [11]

    Passchier C W.1987.Stable positions of rigid objects in non-coaxial flow--A study in vorticity analysis.Journal of Structural Geology, 9 (5-6): 679-690.

    [12]

    Passchier C W.1990.Reconstruction of deformation and flow parameters from deformed vein sets.Tectonophysics, 180 (2-4): 185-199.

    [13]

    Ramsay J G and Huber M Ⅰ.1983.The Techniques of Modern Structural Geology,Vol.1:Strain Analysis.London:Academic Press.15-32.

    [14]

    Sander B.1930.Gefugekunde der Gesteine.Berlin:Springer-Verlag.1-114.

    [15]

    Simpson C and De Paor D G.1993.Strain and kinematic analysis in general shear zones.Journal of Structural Geology, 15 (1): 1-20.

    [16]

    Tikoff B and Fossen H.1993.Simultaneous pure and simple shear:The unifying deformation matrix.Tectonophysics, 217 (3-4): 267-283.

    [17]

    Tikoff B and Fossen H.1995.The limitations of three-dimensional kinematic vorticity analysis.Journal of Structural Geology, 17 (12): 1771-1784.

    [18]

    Tikoff B and Fossen H.1999.Three-dimensional reference deformations and strain facies.Journal of Structural Geology, 21 (11): 1497-1512.

    [19]

    Waldron J W F and Wallace K D.2007.Objective fitting of ellipses in the centre-to-centre(Fry)method of strain analysis.Journal of Structural Geology, 29 (9): 1430-1444.

    [20]

    Wallis S R.1992.Vorticity analysis in a metachert from the Sanbagawa Belt,SW Japan.Journal of Structural Geology, 14 (3): 271-280.

    [21]

    Wallis S R.1995.Vorticity analysis and recognition of ductile extension in the Sanbagawa belt,SW Japan.Journal of Structural Geology, 17 (8): 1077-1093.

    [22]

    Xypolias P and Koukouvelas I K.2001.Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmos Shear Zone(External Hellenides,Greece).Tectonophysics, 338 (1): 59-77.

    [23]

    Xypolias P.2009.Some new aspects of kinematic vorticity analysis in naturally deformed quartzites.Journal of Structural Geology, 31 (1): 3-10.

    [24]

    Zhang J and Zheng Y.1997.Polar Mohr const ructions for strain analysis in general shear zones.Journal of Structural Geology, 19 (5): 745-748.

  • 加载中
计量
  • 文章访问数:  4525
  • PDF下载数:  1167
  • 施引文献:  0
出版历程
收稿日期:  2011-05-12
修回日期:  2011-09-28
刊出日期:  2012-01-25

目录