Petrogenesis of carbonic dykes within southern Tibetan Plateau, and climatic effects
-
摘要: 始新世末期以来,全球大气CO2浓度持续下降,但长期以来不清楚为何这一时期全球大气CO2浓度下降,巨量的大气CO2赋存于何处。深入研究该问题有助于准确理解未来大气CO2浓度变化的趋势,特别是有助于进一步评估人类自身碳排放的后果。这一时期,小印度陆块持续与大亚洲陆块汇聚,导致了以喜马拉雅为代表的山脉群和青藏高原的形成。很早就有学者从地球表层碳循环的角度提出了"青藏高原的隆升导致了全球变冷"的观点,但这一观点既没有解释清楚"巨量大气CO2到何处去"的问题,也没有讨论青藏高原本身向大气圈排放CO2等问题,因此该观点最近受到了强烈的质疑。这些激烈的争论充分反映了传统的地球表层碳循环研究已不能充分满足当前社会的需求。本文从深部碳循环这个视角重新探讨青藏高原在全球碳循环中的作用。在印度与亚洲陆块持续汇聚期间,以喜马拉雅为代表的巨型山脉快速崛起,然后持续遭受化学风化作用,大量消耗大气CO2。化学风化的产物堆积在喜马拉雅山前的前陆盆地内,形成了巨量含新生碳酸盐矿物和有机碳的西瓦里克沉积杂岩,随后新生的西瓦里克杂岩又随持续平板俯冲的印度陆壳被带入青藏高原内部,与平板俯冲的印度陆壳共同经历高温变质作用。俯冲板片内的(黑)云母等含水矿物发生脱水,形成花岗岩浆。花岗岩浆再与俯冲的西瓦里克杂岩内的碳酸盐岩发生交代反应,释放出含钙、镁离子、以CO2和水为主的高温流体,本文称其为壳源火成碳酸岩浆。碳酸岩浆沿张性裂隙上侵、冷凝之后形成藏南的碳酸岩脉。虽然青藏高原内部的火山、温泉等均向大气圈排放CO2,但所排放的碳均为再循环来自大气圈的碳,并且排放量略小于吸收量,否则消耗大气CO2所新生的碳酸岩脉就不会在青藏高原内部保存下来。藏南大量晚新生代碳酸岩脉的发现充分说明了喜马拉雅山脉和藏南高原是一个巨大的碳储库,在其形成过程中将巨量大气CO2转化为流体(岩浆)的形式封存于青藏高原内部,从而大幅降低了大气CO2浓度,最终导致了全球变冷。上述过程充分说明,大气CO2浓度的变化实质上是受控于地球内部的构造运动。进一步可推论出,"全球变化"只是一个自然现象,虽然它有独特的运行轨迹,但与人类的碳排放量无因果关系。Abstract: Global climatic change has become one of the hottest issues worldwide.Knowledge of ancient Earth's surface temperature is critical to understanding Earth today and future as well as evaluating effects of mankind's carbon emissions exactly.Earth's surface average temperature has decreased since the end of the Eocene.It is generally accepted that this long-term global cooling is perhaps a consequence of long-term decreasing of global CO2 concentrations.However,it is still unknown where and how the huge atmospheric CO2 sinked.The hypothesis of global warming in the near future is,therefore,lack of solid evidence when the questions remain unknown.Since the Cenozoic,Indian continent has continuously flighted northwards and hit Asian continent finially,leading to the close of larger Neo-Tethyan Ocean and subsequent uplift of Himalayan Mountains as well as Tibetan Plateau.A "Raymo" hypothesis that the uplift and subquent erosion of the Himalayan-Tibetan orogen has drawn down atmospheric CO2 and cooled the globe is,therefore,present.However,this hypothesis has been recently challenged by the studies of degassing of hot springs within Himalayan Mountains.These scientific arguments have revealed that traditional approaches to surface carbon recycling have hardly satisfied the demands of current society.In this study,the role of Himalayan Mountains and south Tibetan Plateau in the global carbon cycling is re-evaluated.During collision between Indian and Asian continents,the Himalayan Mountains have quickly uplifted and hence underwent stronger chemical weathering,leading to the formation of carbon-rich Siwalik formation within the north of Gange foreland basin to the south of Himalayan Mountains.The carbon-rich Siwalik formation,at the expense of huge atmospheric CO2,has been subsequently transferred into the interior of Tibetan Plateau with flat-subducted Indian crust.Some carbon from the buried Siwalik formation beneath Himalayan Mountains has been released back to atmosphere through hot springs.Most carbon had,however,transferred into deep interior of Tibetan Plateau along with subducted Indian crust.The biotite within the subducted slab underwent dehydration to form granitic magmas beneath south Tibetan Plateau.The metasomatic reactions between the granitic magmas and the subducted carbon-rich Siwalik formation took place to release high-temperature CO2-rich fluids beneath Tibetan Plateau,regarded as crustal-derived carbonic magmas in this study.The magmas/fluids intruded into south Tibetan upper crust to form carbonic dykes.The huge atmospheric CO2 has,therefore,been transformed into carbonic magmas within thickened crust of southern Tibetan Plateau during the collision between India and Asia.The carbon emitted by hot springs as well as volcanoes within Tibetan Plateau was originated from atmosphere.It is recycling carbon.The carbon emissions from Tibetan Plateau are slightly less than those sinked by Tibetan Plateau.Otherwise,the carbonic dykes,formed by consuming huge atmospheric CO2,never occurred within Tibetan Plateau.This clearly suggests that Himalayan Mountains and south Tibetan Plateau are a huge reservoir for atmospheric CO2,leading to global cooling during Cenozoic times.Moreover,the changing of atmospheric CO2 was mainly derived by Earth's tectonic activities,and not by mankind.Global changing is only a natural phenomenon,without any relationships carbon emissions of human.
-
Key words:
- Deep carbon recycling /
- Tibetan Plateau /
- Carbon emission /
- Carbon sinking
-
-
[1] 常承法,郑锡澜.1973a.中国西藏南部珠穆朗玛峰地区构造特征.地质科学, 8 (1): 1—12.
[2] Chang Chengfa and Zheng Xilan.1973a.Tectonic features of the mount Jolmo Lungma region in southern Tibet,China.Chinese Journal of Geology(Scientia Geologica Sinica), 8 (1): 1—12.
[3] 常承法,郑锡澜.1973b.中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨.中国科学(A辑),(2): 190—201.
[4] Chang Chengfa and Zheng Xilan.1973b.The geological feature of Zhumulanmafeng region in southern Tibet(China)and the formation of the E-W ranges in Tibet.Science in China(Series A),(2): 190—201.
[5] 常承法,肖序常.1988.特提斯在青藏高原段的演化.见:肖序常编,喜马拉雅岩石圈构造演化.北京:地质出版社.49—58.
[6] Chang Chengfa and Xiao Xuchang.1988.Tectonic evolution of the eastern Tethys in Qinghai-Xizang(Tibet)Plateau.In:Xiao Xuchang(Ed.).Tectonic Evolution of the Crust-Upper Mantle of the Qinghai-Xizang(Tibet)Plateau.Beijing:Geological Publishing House.49—58.
[7] 高延林,肖序常,常承法等.1988.青藏高原及邻区构造单元划分及其地质构造.见:肖序常编,喜马拉雅岩石圈构造演化.北京,地质出版社.31—48.
[8] Gao Yanlin,Xiao Xuchang,Chang Chengfa et al.1988.Tectonic units of the Qinghai-Xizang(Tibet)Plateau and its adjacent areas and their geotectonic features. In:Xiao Xuchang(Ed.).Tectonic Evolution of the Crust-Upper Mantle of the Qinghai-Xizang(Tibet)Plateau.Beijing:Geological Publishing House.31—48.
[9] 何学贤,唐索寒,朱祥坤等.2007.多接收器等离子体质谱(MC-ICPMS)高精度测定Nd同位素方法.地球学报, 28 (4): 405—410.
[10] He Xuexian,Tang Suohan,Zhu Xiangkun et al.2007.Precise measurement of Nd isotopic ratios by means of multi-collector magnetic sector inductively coupled plasma mass spectrometry.Acta Geoscientia Sinica, 28 (4): 405—410.
[11] 纪伟强,吴福元,锤荪霖等.2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑), 39 (7): 849—871.
[12] Ji Weiqiang,Wu Fuyuan,Chung Sunlin et al.2009.Geochronology and petrogenesis of granitic rocks in Gangdese batholith,southern Tibet.Science in China(Series D), 52 (9): 1240—1261.
[13] 刘 焰,马喆生,韩秀伶等.1997.西藏南迦巴瓦峰地区发现的星叶石.岩石矿物学杂志, 16 (4): 337—340.
[14] Liu Yan,Ma Zhesheng,Han Xiuling et al.1997.Astrophyllite from the Namjabarwa area,eastern Tibet.Acta Petrologica et Mineralogica, 16 (4): 337—340.
[15] 刘 焰,钟大赉,韩秀玲等.2000.东喜马拉雅构造结发现的富碳硼镁钛石:硼镁钛石的新亚种.地质科学, 35 (2): 245—250.
[16] Liu Yan,Zhong Dalai,Han Xiuling et al.2000.C-rich warwickite from the eastern Himalayan syntaxis:A new variety. Chinese Journal of Geology(Scientia Geologica Sinica), 35 (2): 245—250.
[17] 刘 焰,王 猛 2010 喜马拉雅变质岩及构造特征.见:肖序常编.青藏高原的碰撞造山作用及效应.北京:地质出版社.57—92.
[18] Liu Yan and Wang Meng.2010.Metamorphic complex and its tectonic significance in the Himalayan region.In:Xiao Xuchang(Ed.).Collisional Tectonics and Its Effects of the Qinghai-Tibetan Plateau.Beijing:Geological Publishing House.57—89.
[19] 刘志飞,王成善.1998.新生代全球变冷与青藏高原隆升的关系.矿物岩石, 18 (增刊): 123—127.
[20] Liu Zhifei and Wang Chengshan.1998.Relation between Cenozoic global cooling and Qinghai-Tibe Plateau uplift.Journal of Mineralogy and Petrology, 18 (suppl.): 123—127.
[21] 任建德,卢书炜,裴中朝等.2007.新疆阿图什地区木吉一带的火成碳酸岩——来自地质、地球化学分析的证据.地质通报, 26 (12): 1665—1670.
[22] Ren Jiande,Lu Shuwei,Pei Zhongchao et al.2007.Igneous carbonatite in the Muji area,Artux,Xinjiang,China:Evidence from geological and geochemical analyses.Geological Bulletin of China, 26 (12): 1665—1670.
[23] 王 猛,刘 焰,何延波等.2008.喜马拉雅山脉的地质地貌特征:来自SRTM数字高程模型和降水量数据的约束.地质科学, 43 (3): 603—622.
[24] Wang Meng,Liu Yan,He Yanbo et al.2008.Geomorphic characteristics of the Himalayan Mountains and its tectonic implications:New insights from SRTM digital elevation model and precipitation data.Chinese Journal of Geology, 43 (3): 603—622.
[25] 赵 斌,赵劲松,汪劲草等.2004.一种可能的新碳酸岩类型:壳源成因碳酸岩.地球化学, 33 (6): 649—662.
[26] Zhao Bin,Zhao Jinsong,Wang Jincao et al.2004.A possible new carbonatite type:Crust-derived carbonatite.Geochimica, 33 (6): 649—662.
[27] Arrhenius S.1896.On the influence of carbonic acid in the air upon the temperature on the ground.Philosophical Magazine and Journal of Science, 41 : 237—276.
[28] Arthur M A,Dean W E and Schlanger S O.1985.Variations in the global carbon cycle during the Cretaceous related to climate,volcanism,and changes in atmospheric CO2.Geophysical Monograph Series, 32 : 504—529.
[29] Becker J A,Bickle M J,Galy A et al.2008.Himalayan metamorphic CO2 fluxes:Quantitative constraints from hydrothermal springs.Earth Planetary Science Letters, 265 (3—4): 616—629.
[30] Berner R A.2003.The long-term carbon cycle,fossil fuels and atmospheric composition.Nature, 426 : 323—326.
[31] Beerling D J and Royer D L.2011.Convergent Cenozoic CO2 history.Nature Geoscience, 4 (7): 418—420.
[32] Blisniuk P M,Hacker B R,Glodny J et al.2001.Normal faulting in central Tibet.Nature, 412 : 628—632.
[33] Budyko M I and Ronov A B.1979.Chemical evolution of the atmosphere in the Phanerozoic.Geochemistry International, 16 (3): 1—9.
[34] Burchfiel B C,Chen Z,Hodges K V et al.1992.The south Tibetan detachment system,Himalayan orogen:Extension contemporaneous with and parallel to shortening in a collisional mountain belt.Geological Society of America Special Paper, 269 : 1—48.
[35] Chamberlin T C.1899.An attempt to frame a working hypothesis of the cause of the glacial periods on an atmospheric basis.The Journal of Geology, 7 (6): 545—584.
[36] Chu M F,Chung S L,Song B et al.2006.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet.Geology, 34 (9): 745—748.
[37] Clemens J D and Vielzeuf D.1987.Constraints on melting and magma production in the crust.Earth Planetary Science Letters, 86 (2—4): 287—306.
[38] Connolly J A D.2005.Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation.Earth Planetary Science Letters, 236 (1—2): 524—541.
[39] Crowley T J and North G R.1991.Paleoclimatology.Oxford:Oxford University Press.1—339.
[40] Daniel C G,Hollister L S,Parrish R R et al.2003.Exhumation of the main central thrust from lower crustal depths,eastern Bhutan Himalaya.Journal of Metamorphic Geology, 21 (4): 317—334.
[41] Dasgupta R,Hirschmann M M and Withers A C.2004.Deep global cycling of carbon constrained by the solidus of anhydrous,carbonated eclogite under upper mantle conditions.Earth Planetary Science Letters, 227 (1—2): 73—85.
[42] Davidson C,Grujic D E,Hollister L S et al.1997.Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite,High Himalayan Crystallines,Bhutan.Journal of Metamorphic Geology, 15 (5): 593—612.
[43] Dostal J,Keppie J D,McDonnald H et al.2004.Sedimentary origin of calcareous intrusions in the~1 Ga oaxacan complex,southern Mexico:Tectonic implications.International Geology Review, 46 (6): 528—541.
[44] Edmond J M.1992.Himalayan tectonics,weathering processes and the strontium isotope record in marine limestone.Science, 258 (5088): 1594—1597.
[45] Evans M J,Derry L A and France-Lanord C.2008.Degassing of metamorphic carbon dioxide from the Nepal Himalaya.Geochemistry,Geophysics,Geosystems, 9 (4):Q04021,doi: 10.1029/2007GC001796.
[46] France-Lanord C and Derry L A.1997.Organic carbon burial forcing of the carbon cycle fromHimalayan eroison.Nature, 390 : 65—67.
[47] Gaillardet J and Galy A.2008.Himalaya-Carbon sink or source?Science, 320 (5884): 1727—1728.
[48] Gansser A.1964.Geology of the Himalayas.London:Interscience Publishers.John Wiley and Sons.1—289.
[49] Garzione C N,DeCelles P G,Hodkinson D G et al.2003.East-west extension and miocene environmental change in the southern Tibetan Plateau:Thakkhola graben,central Nepal.GSA Bulletin, 115 (1): 3—20.
[50] Garzione C N.2008.Surface uplift of Tibet and Cenozoic global cooling.Geology, 36 (12): 1003—1004.
[51] Geng Q R,Sun Z M,Pan G T et al.2009.Origin of the Gangdise(Transhimalaya)Permian arc in southern Tibet:Stratigraphic and volcanic geochemical constraints.The Island Arc, 18 (3): 467—487.
[52] Grassi D and Schmidt M W.2011.The melting of carbonated pelites from 70 to 700 km depth.Journal of Petrology, 52 (4): 765—789.
[53] Groppo C,Rolfo F and Indares A.2012.Partial melting in the Higher Himalayan Crystallines of Eastern Nepel:the effect of decompression and implications for the channel flow model.Journal of Petrology, 53 (5): 1057—1088.
[54] Guilmette C,Indares A and Hébert R.2011.High-pressure anatectic paragneisses from the Namche Barwa,eastern Himalayan Syntaxis:Textural evidence for partial melting,phase equilibria modeling and tectonic implications.Lithos, 124 (1—2): 66—81.
[55] Harrison T M,Copeland P,Kidd W F S et al.1992.Raising Tibet.Science, 255 (5052): 1663—1670.
[56] Hofmann A W.1997.Mantle geochemistry:The message from oceanic volcanism.Nature, 385 : 219—229.
[57] Johnson T E,White R W and Powell R.2008.Partial melting of metagreywacke:A calculated mineral equilibria study.Journal of Metamorphic Geology, 26 (8): 837—853.
[58] Keller J and Hoefs J.1995.Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai.In:Bell K and Keller J(Eds.).Carbonatite Volcanism:Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites.IAVCEI Proceedings of Volcanology.113—123.
[59] Le Bas M J,Subbarao K V and Walsh J N.2002.Metacarbonatite or marble?——The case of the carbonate,pyroxenite,calcite-apatite rock complex at Borra,eastern Ghats,India.Journal of Asian Earth Sciences, 20 (2): 127—140.
[60] Le Bas M J,Babttat M A O,Taylor R N et al.2004.The carbonatite-marble dykes of Abyan province,Yemen Repulic:The mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis.Mineralogy and Petrology, 82 (1—2): 105—135.
[61] Liu Y and Zhong D L.1997.Petrology of high-pressure granulites from the eastern Himalayan syntaxis.Journal of Metamorphic Geology, 15 (4): 451—466.
[62] Liu Y,Berner Z,Massonne H-J et al.2006.Carbonatite-like dykes from the eastern Himalayan syntaxis:Geochemical,isotopic,and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust.Journal of Asian Earth Sciences, 26 (1): 105—120.
[63] Liu Y,Siebel W,Massonne H-J et al.2007.Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan sequence in the Kharta area,southern Tibet.The Journal of Geology, 115 : 215—230.
[64] Liu Z H,Pagani M,Zinniker D et al.2009.Global cooling during the Eocene-Oligocene climate transition.Science, 323 (5918): 1187—1190.
[65] Maluski G,Prost F and Xiao X C.1982.39 Ar/40Ar dating of the trans-Himalayan calcalkaline magmstism of southern Tibet. Nature, 298 : 152—154.
[66] Nabelek J,Hetenyi G,Vergne J et al.2009.Underplating in the Himalaya-Tibet collision zone:Revealed by the Hi-Climb experiment.Science, 325 (5946): 1371—1374.
[67] Neogi S,Dasgupta S and Fukuoka M.1998.High P-T polymetamorphism,dehydration melting,and generation of migmatites and granites in the higher Himalayan crystalline complex,Sikkim,India.Journal of Petrology, 39 (1): 61—99.
[68] Patino Douce A E and Harris N.1998.Experimental constraints on Himalayan anatexis.Journal of Petrology, 39 (4): 689—710.
[69] Raymo M E,Ruddiman W F and Froelich P N.1988.Influence of late Cenozoic Mountain building on ocean geochemical cycles.Geology, 16 (7): 649—653.
[70] Raymo M E and Ruddiman W F.1992.Tectonic forcing of late Cenozoic climate.Nature, 359 : 117—122.
[71] Royer D L,Berner R A,Montaez I P et al.2004.CO2 as a primary driver of Phanerozoic climate.GSA Today, 14 (3): 4—10.
[72] Schörer U,Hamet J and Allègre C J.1984.The Transhimalaya(Gangdese)plutonism in the Ladakh region:A U-Pb and Rb-Sr study.Earth and Planetary Science Letters, 67 (3): 327—339.
[73] Scher H D,Bohaty S M,Zachos J C et al.2011.Two-stepping into the icehouse:East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition.Geology, 39 (4): 383—386.
[74] Skelton A.2011.Flux rates for water and carbon during greenschist facies metamorphism.Geology, 39 (1): 43—46.
[75] Spear F S,Kohn M J and Cheney J T.1999.P-T paths from anatectic pelites.Contributions to Mineralogy and Petrology, 134 (1): 17—32.
[76] Sun B,Siegert M J,Mudd S M et al. 2009.The Gamburtsev Mountains and the origin and early evolution of the Antarctic ice sheet.Nature, 459 : 690—692.
[77] Sundquist E T.1993.The global carbon dioxide budget.Science, 259 (5097): 934—941.
[78] Thompson A B.1982.Dehydration melting of peltic rocks and the generation of H2O-undersaturation granitic liquids.American Journal of Science, 282 : 1567—1595.
[79] Thompson A B and Connolly J A D.1995.Melting of the continental-crust:Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings.Journal of Geophysical Research, 100 (B8): 15565—15579.
[80] Thomsen T and Schmidt M W.2008.Melting of carbonated pelites at 2.5-5.0 GPa,silicate-carbonatite liquid immiscibility,and potassium-carbon metasomatism of the mantle.Earth and Planetary Science Letters, 267 (1—2): 17—31.
[81] Tsuno K and Dasgupta R.2011.Melting phase relation of nominally anhydrous,carbonated pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon.Contributions to Mineralogy and Petrology, 161 (5): 743—763.
[82] Wan Y S,Liu D Y,Xu Z Y et al.2008.Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area,North China Craton:Geological,petrographical,geochronological and geochemical(Hf,Nd,O and C)evidence.American Journal of Science, 308 (3): 351—378.
[83] Wen D R,Liu D Y,Chung S L et al.2008.Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet.Chemical Geology, 252 (3—4): 191—201.
[84] White R W and Powell R.2002.Melt loss and the preservation of granulite facies mineral assemblages.Journal of Metamorphic Geology, 20 (7): 621—632.
[85] Whitney D L and Evans B W.2010.Abbreviations for names of rock-forming minerals. American Mineralogist, 95 (1): 185—187.
[86] Wyllie P J and Tuttle O F.1960.The system CaO-CO2-H2O and the origin of carbonatites.Journal of Petrology, 1 (1): 1—46.
[87] Yardley B W D and Valley J W.1997.The petrologic case for a dry lower crust.Journal of Geophysical Research, 102 (B6): 12173—12185.
[88] Zachos J C,Pagani M,Sloan L et al.2001.Trends,rhythms,and aberrations in global climate 65 Ma to present.Science, 292 (5517): 686—693.
[89] Zachos J C,Dickens G R and Zeebe R E.2008.An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451 : 279—283.
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0