基于构造地貌学的南盘江与红河分水岭特征分析

童方彤, 董有浦, 刘益, 毛黎光, 李旭英. 2024. 基于构造地貌学的南盘江与红河分水岭特征分析. 地质科学, 59(2): 535-548. doi: 10.12017/dzkx.2024.037
引用本文: 童方彤, 董有浦, 刘益, 毛黎光, 李旭英. 2024. 基于构造地貌学的南盘江与红河分水岭特征分析. 地质科学, 59(2): 535-548. doi: 10.12017/dzkx.2024.037
Tong Fangtong, Dong Youpu, Liu Yi, Mao Liguang, Li Xuying. 2024. Migration characteristics of the watershed between Nanpan River and Red River based on morphotectonics. Chinese Journal of Geology, 59(2): 535-548. doi: 10.12017/dzkx.2024.037
Citation: Tong Fangtong, Dong Youpu, Liu Yi, Mao Liguang, Li Xuying. 2024. Migration characteristics of the watershed between Nanpan River and Red River based on morphotectonics. Chinese Journal of Geology, 59(2): 535-548. doi: 10.12017/dzkx.2024.037

基于构造地貌学的南盘江与红河分水岭特征分析

  • 基金项目:

    国家自然科学基金项目(编号:41762017)和云南省企业基础研究应用基础研究联合专项(编号:202101BC070001-00)资助

详细信息
    作者简介:

    童方彤, 女, 1997年生, 硕士研究生, 第四纪地质学专业。E-mail: 1178297223@qq.com

    通讯作者: 董有浦, 男, 1983年生, 副教授, 博士, 构造地质学专业。本文通讯作者。E-mail: dongypsd@126.com
  • 中图分类号: P542, P931.1

Migration characteristics of the watershed between Nanpan River and Red River based on morphotectonics

More Information
  • 红河曾经在古新世—始新世晚期发源于青藏高原内部,大约渐新世开始其流域面积逐渐缩小。自渐新世至今,青藏高原东南缘发育了一系列大规模走滑断裂。走滑断裂能够影响河流的流向、坡度以及河道形态等。在这些走滑断裂影响下,红河的流域面积是否会发生规律性的变化?本文以南盘江和红河流域分水岭为研究对象,探究红河在红河断裂、建水断裂及文麻断裂等走滑断裂的影响下,其分水岭的迁移特征。本文利用90 m分辨率的DEM提取了红河、南盘江的33条子流域,通过计算获得面积高程积分(HI)、谷底宽高比(VF)、河流陡峭指数(Ksn)和chi(χ)值4个地貌参数,结合野外调查揭示研究区构造活动性差异及分水岭的变化规律。结果显示,研究区分水岭呈分段性变化:龙树村—店房村段向南盘江迁移;店房村—腊梅村段向红河迁移,HI值、VF值及Ksn值三者所得结果与chi(χ)值结果对马鹿山—龙树村段存在不同认识。从整体上看,红河在逐渐失去其流域面积。非构造因素(降雨和岩性)不是控制研究区分水岭迁移的主要因素,研究区分水岭迁移主要受研究区内红河断裂、建水断裂、曲江断裂、文麻断裂及小江断裂南段的构造活动性强弱影响。

  • 加载中
  • 图 1 

    研究区地形渲染图

    Figure 1. 

    Terrain rendering of the study area

    图 2 

    研究区域提取的流域盆地

    Figure 2. 

    Drainage basins extracted from the study area

    图 3 

    河道高程和chi(χ)值的线性关系(据 Whipple et al.,2017修改)

    Figure 3. 

    Linear relationship between channel elevation and chi(χ) value (modified from Whipple et al., 2017)

    图 4 

    均衡和非均衡状态的流域盆地及河道chi(χ)值剖面(据 Willett et al.,2014修改)

    Figure 4. 

    chi(χ) value profiles of basins and channels in equilibrium and disequilibrium states (modified from Willett et al., 2014)

    图 5 

    HI值空间分布图(a)、HI值(b)及以店房为界的东西两侧的HI值统计比较(c)

    Figure 5. 

    Spatial distribution of HI values (a), HI values (b) and statistical comparison of HI values on the east and west sides bounded by Dianfang (c)

    图 6 

    n1-5坡度凹形曲线(a),h1-16坡度凸形曲线(b),n6-13坡度凸形曲线(c)和h17-20坡度凹形曲线(d)

    Figure 6. 

    The slope concave curve of n1-5 (a), the slope convex curve of h1-16 (b), the slope convex curve of n6-13 (c) and the slope concave curve of h17-20 (d)

    图 7 

    VF值空间分布图(a),VF值(b. 红线为河谷横切面位置)及店房为界的东西两侧的VF值统计比较(c)

    Figure 7. 

    Spatial distribution of VF values (a), VF values (b. the red line is of the valley cross-section) and statistical comparison of VF values on the east and west sides bounded by Dianfang (c)

    图 8 

    h19和n6河谷剖面

    Figure 8. 

    Valley profiles of h19 and n6

    图 9 

    Ksn值空间分布图(a)、Ksn值(b)及店房为界的东西两侧的Ksn值统计比较(c)

    Figure 9. 

    Spatial distribution of Ksn values (a), Ksn value (b) and the statistical comparison of east and west sides bounded by Dianfang (c)

    图 10 

    流域Ksn平均值与流域面积散点分布图

    Figure 10. 

    Scatter distribution of mean Ksn value and watershed area

    图 11 

    chi(χ)值空间分布图

    Figure 11. 

    Spatial distribution of chi(χ) value

    图 12 

    红河野外调查点(位置见图 2

    Figure 12. 

    Red River field survey sites (see Fig. 2 for locations)

    图 13 

    南盘江野外调查点(位置见图 2

    Figure 13. 

    Nanpan River field survey sites (see Fig. 2 for locations)

    图 14 

    Nanpan River field survey sites(see Fig. 2 for locations)

    Figure 14. 

    Rock hardness (a) and study area split point location (b)

    图 15 

    研究区年均降雨量分布图

    Figure 15. 

    Distribution of average annual rainfall in the study area

  •  

    邓起东, 张培震, 冉勇康等. 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

    Deng Qidong, Zhang Peizhen, Ran Yongkang et al. 2002. Basic characteristics of activity structure in China. Science China (Series D), 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

     

    段佳鑫, 董有浦, 吴可等. 2021. 滇中河网特征及其对断层活动的响应. 大地构造与成矿学, 45(2): 296-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202102004.htm

    Duan Jiaxin, Dong Youpu, Wu Ke et al. 2021. Characteristics of river networks in the central Yunnan Province and their responses to tectonic activities. Geotectonica et Metallogenia, 45(2): 296-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202102004.htm

     

    韩竹军, 董绍鹏, 毛泽斌等. 2017. 小江断裂带南段全新世活动的地质地貌证据与滑动速率. 地震地质, 39(1): 1-19. doi: 10.3969/j.issn.0253-4967.2017.01.001

    Han Zhujun, Dong Shaopeng, Mao Zebin et al. 2017. The Holocene activity and strike-slip rate of the southern segment of Xiaojiang fault in the southeastern Yunnan region, China. Seismology and Geology, 39(1): 1-19. doi: 10.3969/j.issn.0253-4967.2017.01.001

     

    林玲玲, 李雪梅, 张会平等. 2021. 鄂尔多斯西北缘桌子山地区河流袭夺和分水岭迁移研究. 地质力学学报, 27(2): 294-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202102013.htm

    Lin Lingling, Li Xuemei, Zhang Huiping et al. 2021. River capture and divide migration of the Zhuozishan area in the northwestern margin of the Ordos block. Journal of Geomechanics, 27(2): 294-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202102013.htm

     

    林仲秋. 1989. "分水岭迁移和河流袭夺"理论的正确性必须进一步探讨. 地理学报, 44(2): 253-256. doi: 10.3321/j.issn:0375-5444.1989.02.015

    Lin Zhongqiu. 1989. The exactitude of the theory of migration of divide and river capture must be discussed further. Acta Geographica Sinica, 44(2): 253-256. doi: 10.3321/j.issn:0375-5444.1989.02.015

     

    刘朋雨, 胡宝清, 覃小群等. 2013. 南盘江流域不同类型水水文地球化学特征. 广西师范学院学报(自然科学版), 30(1): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ201301015.htm

    Liu Pengyu, Hu Baoqing, Qin Xiaoqun et al. 2013. Hydrological and geochemical characteristics of different types of water in Nanpanjiang Basin. Journal of Guangxi Teachers Education University (Natural Science Edition), 30(1): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ201301015.htm

     

    刘栋梁, 李海兵, 王平等. 2022. 南海北部盆地新生代物源对周边主要河流演化的响应. 地质学报, 96(8): 2761-2774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202208009.htm

    Liu Dongliang, Li Haibin, Wang Ping et al. 2022. Sedimental provenance response in the norther South China Sea to the Cenozoic fluvial evolution. Acta Geologica Sinica, 96(8): 2761-2774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202208009.htm

     

    王君毅, 许才军, 温扬茂等. 2022. 基于GPS观测的红河断裂带现今分段及闭锁特征. 地球物理学报, 65(4): 1240-1254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202204006.htm

    Wang Junyi, Xu Caijun, Wen Yangmao et al. 2022. Characteristics of segmentation and interseismic coupling along the Red River fault from GPS observations. Chinese Journal of Geophysics, 65(4): 1240-1254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202204006.htm

     

    王文鹄. 1998. 河流袭夺的几种形式. 地理学与国土研究, 14(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT804.010.htm

    Wang Wenhu. 1998. Several forms of river raiding. Geography and Territorial Studies, 14(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT804.010.htm

     

    王洋, 张波, 侯建军等. 2015. 曲江断裂晚第四纪活动特征及滑动速率分析. 地震地质, 37(4): 1177-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201504019.htm

    Wang Yang, Zhang Bo, Hou Jianjun et al. 2015. Late Quaternary activity of the Qujiang fault and analysis of the slip rate. Seismology and Geology, 37(4): 1177-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201504019.htm

     

    王一舟, 郑德文, 张会平等. 2020. 华山山前正断层的分段活动特征——来自河流地貌参数的约束. 地震地质, 42(2): 382-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202002010.htm

    Wang Yizhou, Zheng Dewen, Zhang Huiping et al. 2020. Activity characteristics of the Huashan piedmont normal fault: Insights from fluvial geomorphic Parameters. Seismology and Geology, 42(2): 382-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202002010.htm

     

    向宏发, 韩竹军, 虢顺民等. 2004. 红河断裂带大型右旋走滑运动与伴生构造地貌变形. 地震地质, 26(4): 597-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200404005.htm

    Xiang Hongfa, Han Zhujun, Guo Shunmin et al. 2004. Large-scale dextral strike-slip movement and asociated tectonic deformation along the Red-River fault zone. Seismology and Geology, 26(4): 597-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200404005.htm

     

    尹凤玲, 蒋长胜, 韩立波等. 2018. 红河断裂带库仑应力演化及未来地震危险性估计. 地球物理学报, 61(1): 183-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801017.htm

    Yin Fengling, Jiang Changsheng, Han Libo et al. 2018. Seismic hazard assessment for the Red River fault: Insight from Coulomb stress evolution. Chinese Journal of Geophysics, 61(1): 183-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801017.htm

     

    张建国, 皇甫岗, 谢英情等. 2009. 越南红河断裂活动性研究. 地震地质, 31(3): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200903002.htm

    Zhang Jianguo, Huangfu G, Xie Y Q et al. 2009. Study on the activity of Red River fault in Vietnam. Seismology and Geology, 31(3): 389-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200903002.htm

     

    张沛全, 左天惠, 周青云等. 2016. 南盘江上游河网纵剖面图像及其构造指示意义. 第四纪研究, 36(2): 464-473.

    Zhang Peiquan, Zuo Tianhui, Zhou Qingyun et al. 2016. The drainage network and longitudinal profile image (DNLPI) of Nanpangjiang River upstream catchment and its tectonic implication. Quaternary Sciences, 36(2): 464-473.

     

    郑洪波, 王平, 何梦颖等. 2013. 长江东流水系建立的时限及其构造地貌意义. 第四纪研究, 33(4): 621-630. doi: 10.3969/j.issn.1001-7410.2013.04.01

    Zheng Hongbo, Wang Ping, He Mengying et al. 2013. Timing of the establishment of the east-flowing Yangtze River and tectonic-geomorphic implications. Quaternary Sciences, 33(4): 621-630. doi: 10.3969/j.issn.1001-7410.2013.04.01

     

    周青云, 张沛全, 李鉴林等. 2016. 文山-麻栗坡断裂北段晚第四纪活动特征研究. 地震研究, 39(3): 386-396. doi: 10.3969/j.issn.1000-0666.2016.03.005

    Zhou Qingyun, Zhang Peiquan, Li Jianlin et al. 2016. Research on characteristics of Late Quaternary activity of the North Wenshan-Malipo fault. Journal of Seismological Research, 39(3): 386-396. doi: 10.3969/j.issn.1000-0666.2016.03.005

     

    Agliardi F, Crosta G B, Frattini P et al. 2013. Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth and Planetary Science Letters, 365: 263-274. DOI: 10.1016/j.epsl.2013.01.030.

     

    Azarafza M, Ghazifard A, Asasi F et al. 2021. An empirical classification method for South Pars marls by Schmidt hammer rebound index. MethodsX, 8: 101366. DOI: 10.1016/j.mex.2021.101366.

     

    Cheng Y L, He C Q, Rao G et al. 2018. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation. Tectonophysics, 722: 11-24. DOI: 10.1016/j.tecto.2017.10.024.

     

    Clift P D, Blusztajn J and Nguyen A D. 2006a. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33(19): L19403. DOI: 10.1029/2006GL027772.

     

    Clift P D, Carter A, Campbell I H et al. 2006b. Thermochronology of mineral grains in the Red and Mekong rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry, Geophysics, Geosystems, 7(10): Q10005. DOI: 10.1029/2006GC001336.

     

    Cruslock E M, Naylor L A, Foote Y L et al. 2010. Geomorphologic equifinality: A comparison between shore platforms in Höga Kusten and Fårö, Sweden and the Vale of Glamorgan, South Wales, UK. Geomorphology, 114(1-2): 78-88. DOI: 10.1016/j.geomorph.2009.02.019.

     

    el Hamdouni R, Irigaray C, Fernández T et al. 2008. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1-2): 150-173. DOI: 10.1016/j.geomorph.2007.08.004.

     

    Figueroa A M and Knott J R. 2010. Tectonic geomorphology of the southern Sierra Nevada Mountains (California): Evidence for uplift and basin formation. Geomorphology, 123(1-2): 34-45. DOI: 10.1016/j.geomorph.2010.06.009.

     

    Forte A M and Whipple K X. 2018. Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493: 102-117. DOI: 10.1016/j.epsl.2018.04.026.

     

    Goren L, Willett S D, Herman F et al. 2014. Coupled numerical-analytical approach to landscape evolution modeling. Earth Surface Processes and Landforms, 39(4): 522-545. DOI: 10.1002/esp.3514.

     

    Korup O, Clague J J, Hermanns R L et al. 2007. Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261(3-4): 578-589. DOI: 10.1016/j.epsl.2007.07.025.

     

    Leloup P H, Lacassin R, Tapponnier P et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3-84. doi: 10.1016/0040-1951(95)00070-4

     

    Li Z J, Wang Y, Gan W J et al. 2020. Diffuse deformation in the SE Tibetan Plateau: New insights from geodetic observations. Journal of Geophysical Research: Solid Earth, 125: e2020JB019383. DOI: 10.1029/2020JB019383.

     

    Liu X D, Sun H, Miao Y F et al. 2015. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quaternary Science Reviews, 116(1-14). DOI: 10.1016/j.quascirev.2015.03.010.

     

    Marshall J A and Roering J J. 2014. Diagenetic variation in the Oregon coast range: Implications for rock strength, soil production, hillslope form, and landscape evolution. Journal of Geophysical Research: Earth Surface, 119(6): 1395-1417. DOI: 10.1002/2013JF003004.

     

    Perron J T and Royden L. 2013. An integral approach to bedrock river profile analysis. Earth Surf Proc Land, 38(6): 570-576. DOI: 10.1002/esp.3302.

     

    Poblet J, Bulnes M, Uzkeda H et al. 2022. Using the Schmidt hammer on folds: An example from the Cantabrian zone (NW Iberian Peninsula). Journal of Structural Geology, 155: 104512. DOI: 10.1016/j.jsg.2022.104512.

     

    Rahimi M R, Mohammadi S D and Beydokhti A T. 2022. Correlation between Schmidt hammer hardness, strength properties and mineral compositions of sulfate rocks. Geotechnical and Geological Engineering, 40: 545-574. DOI: 10.1007/s10706-021-01878-w.

     

    Replumaz A and Tapponnier P. 2003. Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research: Solid Earth, 108(B6): 2285. DOI: 10.1029/2001JB000661.

     

    Schwanghart W, Scherler D. 2014. Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2(1): 1-7. doi: 10.5194/esurf-2-1-2014

     

    Strahler A N. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117-1142. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

     

    van Hoang L, Wu F Y, Clift P D et al. 2009. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008. DOI: 10.1029/2009GC002819.

     

    Viles H, Goudie A, Grab S et al. 2011. The use of the Schmidt hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surface Processes and Landforms, 36(3): 320-333. DOI: 10.1002/esp.2040.

     

    Wang H, Lin H and Can P. 2017. Correlation of UCS rating with Schmidt hammer surface hardness for rock mass classification. Rock Mechanics and Rock Engineering, 50: 195-203. DOI: 10.1007/s00603-016-1044-7.

     

    Wang P, Lo C H, Chung S L et al. 2000. Onset timing of left-lateral movement along the Ailao Shan-Red River shear zone: 40Ar/39Ar dating constraint from the Nam Dinh area, northeastern Vietnam. Journal of Asian Earth Sciences, 18(3): 281-292. DOI: 10.1016/S1367-9120(99)00064-4.

     

    Wang Y, Sieh K, Tun S T et al. 2014. Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119(4): 3767-3822. DOI: 10.1002/2013JB010762.

     

    Wang Y Z, Zhang H P, Zheng D W et al. 2014. Controls on decadal erosion rates in Qilian Shan: Re-evaluation and new insights into landscape evolution in North-East Tibet. Geomorphology, 223: 117-128. DOI: 10.1016/j.geomorph.2014.07.002.

     

    Whipple K X and Tucker G E. 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. DOI: 10.1029/1999JB900120.

     

    Whipple K X, Forte A M, DiBiase R A et al. 2017. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122(1): 248-273. DOI: 10.1002/2016JF003973.

     

    Willett S D. 1999. Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. DOI: 10.1029/1999JB900248.

     

    Willett S D, Mccoy S W, Perron J T et al. 2014. Dynamic reorganization of river basins. Science, 343(6175): 1248765. DOI:10.1126/science.1248765.

  • 加载中

(15)

计量
  • 文章访问数:  825
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2023-08-16
修回日期:  2023-10-23
刊出日期:  2024-03-01

目录