基于贝叶斯方法的地壳厚度定量估算

郑辉, 葛粲, 张明明, 顾海欧, 孙贺, 汪方跃, 李修钰. 2024. 基于贝叶斯方法的地壳厚度定量估算. 地质科学, 59(2): 522-534. doi: 10.12017/dzkx.2024.036
引用本文: 郑辉, 葛粲, 张明明, 顾海欧, 孙贺, 汪方跃, 李修钰. 2024. 基于贝叶斯方法的地壳厚度定量估算. 地质科学, 59(2): 522-534. doi: 10.12017/dzkx.2024.036
Zheng Hui, Ge Can, Zhang Mingming, Gu Haiou, Sun He, Wang Fangyue, Li Xiuyu. 2024. Quantitative estimation of crustal thickness based on Bayesian method. Chinese Journal of Geology, 59(2): 522-534. doi: 10.12017/dzkx.2024.036
Citation: Zheng Hui, Ge Can, Zhang Mingming, Gu Haiou, Sun He, Wang Fangyue, Li Xiuyu. 2024. Quantitative estimation of crustal thickness based on Bayesian method. Chinese Journal of Geology, 59(2): 522-534. doi: 10.12017/dzkx.2024.036

基于贝叶斯方法的地壳厚度定量估算

  • 基金项目:

    国家自然科学基金项目(编号:42272341,42273061)和科技部第二次青藏高原综合科学考察项目(编号:2019QZKK0708)资助

详细信息
    作者简介:

    郑辉, 男, 1997年生, 硕士研究生, 地理学专业。E-mail: zhenghui2739@163.com

    通讯作者: 葛粲, 男, 1986年生, 博士, 副教授, 固体地球物理学专业。本文通讯作者。E-mail: gecan@hfut.edu.cn
  • 中图分类号: P628+.1

Quantitative estimation of crustal thickness based on Bayesian method

More Information
  • 大陆地壳一直以来都扮演着记录过去40亿年地球演化历史的重要角色。现代板块汇聚边界形成的岩浆岩地球化学特征与岩浆活动时的地壳厚度高度相关,因此,一系列地球化学指标可作为地壳厚度的优秀示踪剂。然而,由于岩浆岩地球化学组成的复杂性,准确量化过去地质时期地壳厚度一直是一项具有挑战性的任务。本文基于地球化学大数据,运用贝叶斯方法,建立了一个利用多种地化指标(CaO、K2O、MnO、Dy、Ho、Lu、Y、Sr/Y、Ce/Y、La/Yb、Sm/Yb、Dy/Yb)定量估算地壳厚度的贝叶斯模型。利用中新世以来(<15 Ma)的全球数据验证表明,与传统的单指标方法相比,贝叶斯模型对现今地壳厚度提供了更准确的估计。利用该模型重建了新生代拉萨地块地壳厚度变化,重建结果表明,拉萨地块在50~30 Ma经历了多阶段地壳增厚,最终形成如今的巨厚地壳。

  • 加载中
  • 图 1 

    岩石样品的全球分布

    Figure 1. 

    Global distribution of rock samples

    图 2 

    岩石样品的TAS图

    Figure 2. 

    TAS diagram of rock samples

    图 3 

    地球化学元素指标随地壳厚度变化的概率密度分布图(色标同图 4f

    Figure 3. 

    Probability density distributions of geochemical elements with the variation of crustal thickness (color code as shown in Fig. 4f)

    图 4 

    应用不同方法估算得到的地壳厚度与Crust 1.0模型提供的现今地壳厚度的比较

    Figure 4. 

    Comparison of estimated crustal thickness by using different methods with the current crustal thickness provided by the Crust 1.0 model

    图 5 

    拉萨地块地球化学元素指标随时间的变化

    Figure 5. 

    Variations of geochemical element indexes over time in Lhasa block

    图 6 

    拉萨地块数据分布和地壳厚度后验概率随时间的变化

    Figure 6. 

    The distribution of data in Lhasa block and the variation of posterior probabilities of crustal thickness over time

    图 7 

    应用不同方法反演拉萨地块地壳厚度的结果比较

    Figure 7. 

    Comparison of results of crustal thickness inversion using different methods in Lhasa block

  •  

    丁林. 2003. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约. 中国科学: 地球科学, 33(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301005.htm

    Ding Lin. 2003. Paleocene deep-water sediments and radiolarian faunas: Implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Science China: Earth Sciences, 33(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301005.htm

     

    董国臣, 莫宣学, 赵志丹等. 2021. 大陆碰撞过程的火山岩响应: 以西藏林周林子宗火山岩为例. 沉积与特提斯地质, 41(2): 332-339. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102017.htm

    Dong Guochen, Mo Xuanxue, Zhao Zhidan et al. 2021. A response of volcanic rocks to the India-Asia continental collision: A case study on Linzizong volcanic rocks in Linzhou, Tibet. Sedimentary Geology and Tethyan Geology, 41(2): 332-339. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102017.htm

     

    葛粲, 汪方跃, 李永东等. 2018. 基于GEOROC大数据分析地壳厚度地球化学指标. 岩石学报, 34(11): 3179-3188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811003.htm

    Ge Can, Wang Fangyue, Li Yongdong et al. 2018. Analysis of geochemical indices of crustal thickness based on GEOROC big data. Acta Petrologica Sinica, 34(11): 3179-3188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811003.htm

     

    官文慧, 汪洋. 2017. 定量估算造山带地壳厚度的岩石地球化学方法: 综述与实例. 地球科学与环境学报, 39(2): 214-224. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201702006.htm

    Guan Wenhui and Wang Yang. 2017. Petrogeochemical methods for quantitative estimation of the crustal thickness of orogenic belt: Overview and case studies. Journal of Earth Sciences and Environment, 39(2): 214-224. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201702006.htm

     

    侯增谦, 郑远川, 卢占武等. 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010001.htm

    Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu et al. 2020. Growth, thickening and evolution of the thickened crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202010001.htm

     

    李存华, 孙志挥, 陈耿等. 2004. 核密度估计及其在聚类算法构造中的应用. 计算机研究与发展, 41(10): 1712-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ200410015.htm

    Li Cunhua, Sun Zhihui, Chen Geng et al. 2004. Kernel density estimation and its application to clustering algorithm construction. Journal of Computer Research and Development, 41(10): 1712-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ200410015.htm

     

    李廷栋. 1995. 青藏高原隆升的过程和机制. 地球学报, (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm

    Li Tingdong. 1995. The uplifting process and mechanism of Qinhai-Tibet Plateau. Acta Geoscientia Sinica, (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm

     

    刘欣雨, 张旗, 张成立. 2019. 基于大数据方法建立大洋安山岩构造环境判别图. 地质通报, 38(12): 1963-1970. doi: 10.12097/j.issn.1671-2552.2019.12.004

    Liu Xinyu, Zhang Qi and Zhang Chengli. 2019. The establishment of oceanic andesites tectonic environment discrimination diagrams with big data method. Geological Bulletin of China, 38(12): 1963-1970. doi: 10.12097/j.issn.1671-2552.2019.12.004

     

    莫宣学, 赵志丹, 邓晋福等. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm

    Mo Xuanxue, Zhao Zhidan, Deng Jinfu et al. 2003. Response of volcanism to the India-Asian collision. Earth Science Frontiers, 10(3): 135-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm

     

    王成善, 李祥辉, 胡修棉. 2003. 再论印度—亚洲大陆碰撞的启动时间. 地质学报, 77(1): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301005.htm

    Wang Chengshan, Li Xianghui and Hu Xiumian. 2003. Age of initial collision of India with Asia: Review and constraints from sediments in southern Tibet. Acta Geologica Sinica, 77(1): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200301005.htm

     

    王成善, 戴紧根, 刘志飞等. 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903003.htm

    Wang Chengshan, Dai Jingen, Liu Zhifei et al. 2009. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review. Earth Science Frontiers, 16(3): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903003.htm

     

    汪洋. 2007. 中国东部中生代钾质火成岩研究中的几个问题. 地质论评, 53(2): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200702008.htm

    Wang Yang. 2007. A discussion on some problems in the research on the Mesozoic potassic igneous rocks in eastern China. Geological Review, 53(2): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200702008.htm

     

    徐倩, 曾令森, 高家昊等. 2019. 藏南冈底斯岩基东段中新世中酸性高Sr/Y比岩浆岩的地球化学特征及成因探讨. 岩石学报, 35(6): 1627-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906002.htm

    Xu Qian, Zeng Lingsen, Gao Jiahao et al. 2019. Geochemical characteristics and genesis of the Miocene high Sr/Y intermediate-felsic magmatic rocks in eastern Gangdese batholith, southern Tibet. Acta Petrologica Sinica, 35(6): 1627-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906002.htm

     

    张旗, 周永章. 2017. 大数据正在引发地球科学领域一场深刻的革命——《地质科学》2017年大数据专题代序. 地质科学, 52(3): 637-648. http://www.dzkx.org/article/doi/10.12017/dzkx.2017.041

    Zhang Qi and Zhou Yongzhang. 2017. Big data will lead to a profound revolution in the field of geological science. Chinese Journal of Geology, 52(3): 637-648. http://www.dzkx.org/article/doi/10.12017/dzkx.2017.041

     

    张颖慧, 王涛, 焦守涛等. 2020. 国内外岩浆岩数据库现状与应用前景. 高校地质学报, 26(1): 11-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202001003.htm

    Zhang Yinghui, Wang Tao, Jiao Shoutao et al. 2020. Review of igneous rock databases and their application prospect. Geological Journal of China Universities, 26(1): 11-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202001003.htm

     

    Bassin C, Laske G and Masters G. 2000. The current limits of resolution for surface wave tomography in North America. Eos, Transactions American Geophysical Union, 81(48): F897.

     

    Beck R A, Burbank D W, Sercombe W J et al. 1995. Stratigraphic evidence for an early collision between Northwest India and Asia. Nature, 373(6509): 55-58. DOI: 10.1038/373055a0.

     

    Cawood P A and Hawkesworth C J. 2019. Continental crustal volume, thickness and area, and their geodynamic implications. Gondwana Research, 66: 116-125. DOI: 10.1016/j.gr.2018.11.001.

     

    Chapman J B, Ducea M N, DeCelles P G et al. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919-922. DOI: 10.1130/G36996.1.

     

    Chapman J B and Kapp P. 2017. Tibetan magmatism database. Geochemistry, Geophysics, Geosystems, 18(11): 4229-4234. DOI: 10.1002/2017GC007217.

     

    Chiaradia M. 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas: An earth scale perspective. Scientific Reports, 5: 8115. DOI: 10.1038/srep08115.

     

    Chung S L, Liu D Y, Ji J Q et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. DOI: 10.1130/G19796.1.

     

    Chung S L, Chu M F, Ji J Q et al. 2009. The nature and timing of crustal thickening in southern Tibet: Geochemical and zircon Hf isotopic constraints from post-collisional adakites. Tectonophysics, 477(1-2): 36-48. DOI: 10.1016/j.tecto.2009.08.008.

     

    Condie K C. 1973. Archean magmatism and crustal thickening. Geological Society of America Bulletin, 84(9): 2981-2992. DOI: 10.1130/0016-7606(1973)84<2981:AMACT>2.0.CO;2.

     

    DeCelles P, Kapp P, Gehrels G E et al. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33(5): 824-849. DOI: 10.1002/2014TC003522.

     

    Dhuime B, Wuestefeld A and Hawkesworth C J. 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7): 552-555. DOI: 10.1038/ngeo2466.

     

    Ding L, Kapp P and Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3): TC3001. DOI: 10.1029/2004TC001729.

     

    Ding L, Xu Q, Yue Y H et al. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250-264. DOI: 10.1016/j.epsl.2014.01.045.

     

    Ding L, Kapp P, Cai F L et al. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 652-667. DOI: 10.1038/s43017-022-00318-4.

     

    Guo P and Yang T. 2023. Quantifying continental crust thickness using the machine learning method. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB025970. DOI: 10.1029/2022JB025970.

     

    Hu F Y, Ducea M N, Liu S W et al. 2017. Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application. Scientific Reports, 7: 7058. DOI: 10.1038/s41598-017-07849-7.

     

    Hu X M, Garzanti E, Wang J G et al. 2016. The timing of India-Asia collision onset: Facts, theories, controversies. Earth-Science Reviews, 160: 264-299. DOI: 10.1016/j.earscirev.2016.07.014.

     

    Klootwijk C T, Gee J S, Peirce J W et al. 1992. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast ridge, ODP Leg 121. Geology, 20(5): 395-398. DOI: 10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2.

     

    Laske G, Masters G, Ma Z T et al. 2013. Update on CRUST1.0: A 1-degree global model of earth's crust. Geophysical Research Abstracts, 15: EGU2013-2658.

     

    Lei M, Chen J L and Li C P. 2022. Geochemical evidence for the Eocene surface uplift of the southern Lhasa subterrane, southern Tibet and the implications. Lithos, 434-435: 106919. DOI: 10.1016/j.lithos.2022.106919.

     

    Lu D, Liu S Y and Ricciuto D. 2019. An efficient Bayesian method for advancing the application of deep learning in earth science. //Papapetrou P, Cheng X Q and He Q. 19th IEEE International Conference on Data Mining Workshops. Piscataway, New Jersey: IEEE. 270-278. DOI: 10.1109/ICDMW.2019.00048.

     

    Luffi P and Ducea M N. 2022. Chemical mohometry: Assessing crustal thickness of ancient orogens using geochemical and isotopic data. Reviews of Geophysics, 60(2): e2021RG000753. DOI: 10.1029/2021RG000753.

     

    Mantle G W and Collins W J. 2008. Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology, 36(1): 87-90. DOI: 10.1130/G24095A.1.

     

    Mooney W D, Laske G and Masters T G. 1998. CRUST 5.1: A global crustal model at 5°×5°. Journal of Geophysical Research: Solid Earth, 103(B1): 727-747. DOI: 10.1029/97JB02122.

     

    Plank T and Langmuir C H. 1988. An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4): 349-370. DOI: 10.1016/0012-821X(88)90135-5.

     

    Profeta L, Ducea M N, Chapman J B et al. 2016. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5: 17786. DOI: 10.1038/srep17786.

     

    Tang M, Ji W Q, Chu X et al. 2021. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1): 76-80. DOI: 10.1130/G47745.1.

     

    Xiao Y F, Suzuki N and He W H. 2018. Low-latitudinal standard Permian radiolarian biostratigraphy for multiple purposes with unitary association, graphic correlation, and Bayesian inference methods. Earth-Science Reviews, 179: 168-206. DOI: 10.1016/j.earscirev.2018.02.011.

     

    Zhang M M, Wang C B, Zhang Q et al. 2021. Temporal-spatial analysis of alkaline rocks based on GEOROC. Applied Geochemistry, 124: 104853. DOI: 10.1016/j.apgeochem.2020.104853.

     

    Zou S H, Chen X L, Xu D R et al. 2021. A machine learning approach to tracking crustal thickness variations in the eastern North China Craton. Geoscience Frontiers, 12(5): 101195. DOI:10.1016/j.gsf.2021.101195.

  • 贝叶斯模型应用程序及说明文档_郑辉_地质科学
  • 加载中

(7)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-10-08
修回日期:  2023-12-14
刊出日期:  2024-03-01

目录