生物岩石学的定义

吴亚生. 2023. 生物岩石学的定义. 地质科学, 58(2): 697-709. doi: 10.12017/dzkx.2023.040
引用本文: 吴亚生. 2023. 生物岩石学的定义. 地质科学, 58(2): 697-709. doi: 10.12017/dzkx.2023.040
Wu Yasheng. 2023. Definition of biopetrology. Chinese Journal of Geology, 58(2): 697-709. doi: 10.12017/dzkx.2023.040
Citation: Wu Yasheng. 2023. Definition of biopetrology. Chinese Journal of Geology, 58(2): 697-709. doi: 10.12017/dzkx.2023.040

生物岩石学的定义

  • 基金项目:

    国家自然科学基金面上项目(编号:41972320)资助

详细信息
    作者简介:

    吴亚生,男,1963年生,博士,副研究员(岗位教授),古生物与地层学专业。E-mail:wys@mail.igcas.ac.cn

  • 中图分类号: P53, P588, Q93

Definition of biopetrology

  • 生物岩石学是研究生物岩(即生物成因的岩石)的特征、形成机制、形成环境及其与矿产资源的关系的一门新兴交叉学科,其研究内容至少包括生物矿化、现代生物礁、古代生物礁、现代微生物岩石和古代微生物岩石5个方面。生物矿化作用和现代生物岩的研究为古代生物岩的研究提供了认识基础。由于现代生物圈和环境不同于古代,现代生物矿化作用和生物岩的研究成果并不全部能直接应用于古代生物岩研究。古代生物岩和生物矿化作用的类型比现代丰富得多,不可能全部从现代生物岩和生物矿化作用中找到参照,但可以为现代生物矿化实验研究提供设计思路。生物岩石学的相关学科包括生物学、微生物学、古生物学、古微生物学、沉积学、沉积岩石学、矿物学、地球化学、地质微生物学等,因为生物岩石学研究需要应用这些学科的知识,并且生物岩石学研究也会反哺这些学科。

  • 加载中
  • 图 1 

    生物岩石学的研究领域划分

    Figure 1. 

    Research domains of biopetrology

    图 2 

    生物岩石学的相关学科(圆圈的重叠代表了研究范围的重叠)

    Figure 2. 

    Related disciplines of biopetrology (research scope overlapping shown by the overlapping circles)

  •  

    陈骏, 姚素平. 2005. 地质微生物学及其发展方向. 高校地质学报, 11(2): 154-166. doi: 10.3969/j.issn.1006-7493.2005.02.002

    Chen Jun and Yao Suping. 2005. Geomicrobiology and Its Progress. Geological Journal of China Universities, 11(2): 154-166. doi: 10.3969/j.issn.1006-7493.2005.02.002

     

    戴永定, 宋海明, 沈继英. 2003. 河北宣龙铁矿化石细菌. 中国科学(D辑: 地球科学), 33(8): 751-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308005.htm

    Dai Yongding, Song Haiming and Shen Jiying. 2003. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science China Earth Science, 47(4): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308005.htm

     

    杜秋定, 伊海生. 2009. 滇东南中三叠统法郎组锰矿床微生物成因的新证据. 地质科技情报, 28(5): 78-83. doi: 10.3969/j.issn.1000-7849.2009.05.011

    Du Qiuding and Yi Haisheng. 2009. New microbiological origin evidence of manganese deposit in the Falang Formation of Middle Triassic, Southeast Yunnan. Bulletin of Geological Science and Technology, 28(5): 78-83. doi: 10.3969/j.issn.1000-7849.2009.05.011

     

    杜汝霖, 李凤臣, 李培菊等. 1992. 冀西北长城纪宣龙式铁矿层中微体植物化石的发现及其意义. 地质论评, 38(2): 184-189. doi: 10.3321/j.issn:0371-5736.1992.02.010

    Du Rulin, Li Fengchen, Li Peiju et al. 1992. Discovery and significance of microfossils from the Changchengian Xuanlong-type iron formations in northwestern Hebei. Geological Reviews, 38(2): 184-189. doi: 10.3321/j.issn:0371-5736.1992.02.010

     

    范嘉松. 1996. 中国生物礁与油气. 北京: 海洋出版社. 1-329.

    Fan Jiasong. 1996. Reefs and Oil-Gas in China. Beijing: China Ocean Press. 1-329.

     

    侯奎, 陈志明, 于洁. 1983. 宣龙铁矿矿石组构特征及蓝藻对铁的富集作用. 地质科学, 18(3): 246-250. http://www.dzkx.org/article/id/geology_10609

    Hou Qui, Chen Zhiming and Yu Jie. 1983. Ore fabric and effect of blue-algae on iron richment in Xuanlong iron mine, Hebei. Chinese Journal of Geology, 18(3): 246-250. http://www.dzkx.org/article/id/geology_10609

     

    李文均, 蒋宏忱. 2018. 地质微生物学: 一门新兴的交叉学科. 微生物学报, 58(4): 521-523. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201804002.htm

    Li Wenjun and Jiang Hongchen. 2018. Geomicrobiology: A new interdisciplinary subject. Acta Microbiologica Sinica, 58(4): 521-523. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201804002.htm

     

    刘树根, 宋金民, 罗平等. 2016. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景. 成都理工大学学报(自然科学版), 43(2): 129-152. doi: 10.3969/j.issn.1671-9727.2016.02.01

    Liu Shugen, Song Jinmin, Lou Ping et al. 2016. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(2): 129-152. doi: 10.3969/j.issn.1671-9727.2016.02.01

     

    刘志礼, 刘雪娴, 李鹏富等. 1995. 宣龙式铁矿生物标志物(烷烃)的研究. 地质学报, 69(2): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502003.htm

    Liu Zhili, Liu Xuexian, Li Pengfu et al. 1995. Biomarkers (alkanes) of the Xuanlong-type iron deposits. Acta Geologica Sinica, 69(2): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199502003.htm

     

    罗平, 王石, 李朋威等. 2013. 微生物碳酸盐岩油气储层研究现状与展望. 沉积学报, 31(5): 807-823. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305007.htm

    Luo Ping, Wang Shi, Li Pengwei et al. 2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica, 31(5): 807-823. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305007.htm

     

    王国忠. 2001. 南海珊瑚礁区沉积学. 北京: 海洋出版社. 1-303.

    Wang Guozhong. 2001. Sedimentology of Coral Reef Area in the South China Sea. Beijing: China Ocean Press. 1-303.

     

    卫平生, 刘全新, 张景廉等. 2006. 再论生物礁与大油气田的关系. 石油学报, 27(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200602007.htm

    Wei Pingsheng, Liu Quanxin, Zhang Jinglian et al. 2006. Re-discussion of relationship between reef and giant oil-gas fields. Acta Petrolei Sinica, 27(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200602007.htm

     

    吴亚生, 姜红霞, 虞功亮等. 2018. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因. 古地理学报, 20(5): 737-775. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201805002.htm

    Wu Yasheng, Jiang Hongxia, Yu Gongliang et al. 2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China. Journal of Palaeogeography, 20(5): 737-775. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201805002.htm

     

    张懿, 陈龙, 李建等. 2021. 渝东北陡山沱组碳酸锰微生物岩沉积环境初探. 沉积学报, 39(6): 1387-1405. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106006.htm

    Zhang Yi, Chen Long, Li Jian et al. 2021. Preliminary study of manganese Carbonate microbialite sedimentary environment of the Doushantuo Formation in Northeast Chongqing. Acta Sedimentologica Sinica, 39(6): 1387-1405. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106006.htm

     

    Bianciardi G, Rizzo V and Cantasano N. 2014. Opportunity Rover's image analysis: microbialites on Mars? International Journal of Aeronautical and Space Sciences, 15(4): 419-433. DOI: 10.5139/IJASS.2014.15.4.419.

     

    Burne R V and Moore L. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2(3): 241-254. DOI: 10.2307/3514674.

     

    Cumings E R and Shrock R R. 1928. Niagaran coral reefs of Indiana and adjacent states and their stratigraphic relations. Geological Society of America Bulletin, 39(2): 579-620. DOI: 10.1130/GSAB-39-579.

     

    Dodd M S, Papineau D, She Z B et al. 2019. Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations. Earth and Planetary Science Letters, 512: 163-174. DOI: 10.1016/j.epsl.2019.01.054.

     

    Ehrenberg C G. 1853. Weisser biolithischer Süsswasser-Mergel vom See Garag im Fajum, ein neuer Polygastern-Biolith. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 1853: 200-220.

     

    Embry A and Klovan J E. 1971. A Late Devonian reef tract on northeastern Banks Island, Northwest Territories. Bulletin of Canadian Petroleum Geology, 19(4): 730-781. DOI: 10.35767/gscpgbull.19.4.730.

     

    Grotzinger J and Al-Rawahi Z. 2014. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultanate of Oman. AAPG Bulletin, 98(8): 1453-1494. DOI: 10.1306/02271412063.

     

    James N P. 1978. Facies models 10. reefs. Geoscience Canada, 5(1): 16-26.

     

    James N P. 1984. Facies Models. //Walker R G. Reefs in Facies Models. Newfoundland: Geological Association of Canada. 229-244.

     

    Jiang L L, Yu K F, Tao S C et al. 2021. ENSO variability during the medieval climate anomaly as recorded by porites corals from the northern South China Sea. Paleoceanography and Paleoclimatology, 36(4): e2020PA004173. DOI: 10.1029/2020PA004173.

     

    Kiessling W, Flügel E and Golonka J. 2002. Phanerozoic Reef Patterns. SEPM Special Publication No. 72. Tulsa: Society for Sedimentary Geology (SEPM). 775.

     

    Planavsky N and Ginsburg R N. 2009. Taphonomy of modern marine Bahamian microbialites. Palaios, 24(1): 5-17. DOI: 10.2110/palo.2008.p08-001r.

     

    Reid R P, James N P, Macintyre I G et al. 2003. Shark bay stromatolites: Microfabrics and reinterpretation of origins. Facies, 49: 299-324. DOI: 10.1007/s10347-003-0036-8.

     

    Rivadeneyra M A, Ramos-Cormenzana A, Delgado G et al. 1996. Process of carbonate precipitation by Deleya halophila. Current Microbiology, 32: 308-313. DOI: 10.1007/s002849900055.

     

    Sun J, Zhu X K and Li Z H. 2018. Confirmation and global significance of a large-scale Early Neoproterozoic banded iron formation on Hainan Island, China. Precambrian Research, 307: 82-92. DOI: 10.1016/j.precamres.2018.01.005.

     

    Wu Y S, Yu G L, Li R H et al. 2014. Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance. Scientific Reports, 4: 1-5. DOI: 10.1038/srep03820.

     

    Wu Y S. 2022. Definition of biopetrology. Biopetrology, 1(1): 3-8. http://biopetrology.com/yswdob. http://biopetrology.com/yswdob

     

    Wu Y S and Jiang H X. 2022. Earth's earliest stromatolites in the 3.7 billion years old rock from Greenland: evidence of benthic microbes. Biopetrology, 1(2): 61-69. http://biopetrology.com/eositb. http://biopetrology.com/eositb

     

    Yan Z, Liu J B, Ezaki Y et al. 2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 45-57. DOI:10.1016/j.palaeo.2016.07.009.

  • 加载中

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-11-12
修回日期:  2022-12-07
刊出日期:  2023-04-01

目录