塔西南齐姆根楔形构造与走滑构造叠加两阶段演化模式

杨庚, 陈竹新. 2023. 塔西南齐姆根楔形构造与走滑构造叠加两阶段演化模式. 地质科学, 58(2): 347-378. doi: 10.12017/dzkx.2023.023
引用本文: 杨庚, 陈竹新. 2023. 塔西南齐姆根楔形构造与走滑构造叠加两阶段演化模式. 地质科学, 58(2): 347-378. doi: 10.12017/dzkx.2023.023
Yang Geng, Chen Zhuxin. 2023. A two-stage evolution model of the wedged-shaped structures superposed with strike-slip faulting for the Qimugen oroclines of the Southwest Tarim Basin, Northwest China. Chinese Journal of Geology, 58(2): 347-378. doi: 10.12017/dzkx.2023.023
Citation: Yang Geng, Chen Zhuxin. 2023. A two-stage evolution model of the wedged-shaped structures superposed with strike-slip faulting for the Qimugen oroclines of the Southwest Tarim Basin, Northwest China. Chinese Journal of Geology, 58(2): 347-378. doi: 10.12017/dzkx.2023.023

塔西南齐姆根楔形构造与走滑构造叠加两阶段演化模式

  • 基金项目:

    中国石油天然气股份有限公司科技项目(编号:2021DJ0301)资助

详细信息
    作者简介:

    杨庚,男,1965年生,博士,高级工程师,构造地质学专业。E-mail:yanggeng@petrochina.com.cn

  • 中图分类号: P542

A two-stage evolution model of the wedged-shaped structures superposed with strike-slip faulting for the Qimugen oroclines of the Southwest Tarim Basin, Northwest China

  • 塔里木盆地西南缘逆冲带由西部近东西方向的喀什逆冲构造带和东部近东西方向柯克亚—和田逆冲构造带以及中间喀什—叶城走滑断层系组成,而北西—南东走向的喀什—叶城走滑断层带及其东侧齐姆根构造则为呈北东方向凸出的弧形构造。齐姆根弧形构造在地表地质和地震剖面均表现为向盆地方向倾斜的单斜形态。而且在塔西南地区,该弧形构造上从白垩系到新近系地层厚度明显大于东西两侧逆冲带同时代地层厚度,表现为异常增厚的特征。为了探讨齐姆根弧形构造特征及地层厚度异常增厚等原因,依据前人的地表地质填图成果,以及塔里木盆地西南缘齐姆根地区及邻区完成的二维地震资料及钻井资料成果,对该区地震剖面资料进行详细的构造解释,提出齐姆根弧形构造单斜之下存在3个隐伏逆冲构造楔形体,即棋盘楔形构造、齐姆根楔形构造和英吉沙楔形构造。地震剖面解释的生长地层指出棋盘楔形构造形成最早,为上新世阿图什组沉积时期;其次发育齐姆根楔形构造,为更新世西域组底部沉积时期;最晚发育英吉沙楔形构造,时间大约在更新世西域组中?上段沉积时期,据此认为齐姆根中深层逆冲构造位移扩展方式为前展式。而且地震剖面解释上也揭示了白垩系到新近系地层厚度异常增厚发育的构造部位及发育规律,说明地层异常厚度变化受区域构造控制,其时间大约为更新世西域组沉积时期。该时期对应于喀什—叶城走滑断层系活动时期,据此我们推测由于走滑断层系区域侧向挤压作用以及东西两侧发育的逆冲构造带起到了限制阻挡作用,三者联合之下造成了齐姆根单斜上含软弱层的各时代地层被挤压屈曲形成弧形形态构造,在弧形构造发育期间岩层之间层间滑脱加厚可导致地层厚度异常增厚。综合前面认识,最后提出齐姆根弧形构造为叠加构造发育地区,经历了早、晚两期构造叠加变形:早期为逆冲楔形构造发育阶段,晚期为走滑作用改造及弧形构造形成阶段。而且沿着齐姆根弧形构造走向,弧形构造北西侧翼部单斜发生逆时针旋转,而弧形构造南东侧翼部单斜发生顺时针旋转,并得到已有古地磁数据支持,属于旋转弧构造类型。该认识支持了帕米尔东侧局部弧形构造是在早期发育的逆冲推覆构造基础上,逐渐叠加有晚期发育的左旋走滑断层而形成弧形构造。

  • 加载中
  • 图 1 

    帕米尔造山带区域构造图(据Robison et al., 2004修改;图中古地磁资料据Bosboom et al., 2014c

    Figure 1. 

    Tectonic map of the Pamir orogenic belt showing major tectonic domains (modified after Robison et al., 2004; paleomagnetic results from Bosboom et al., 2014c)

    图 2 

    帕米尔东缘简化地质图(据新疆地质矿产局,1993;Robinson,2009;Cowgill,2011;Wang et al., 2014修改)及塔西南齐姆根弧形构造带钻井及地震剖面构造解释位置图

    Figure 2. 

    Simplified geological map of the eastern margin of Pamir (modified after Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993; Robinson, 2009;Cowgill, 2011;Wang et al., 2014) and locations of the Qimugen oroclines with well data and seismic lines in the West Tarim Basin

    图 3 

    塔西南齐姆根弧形构造带地层柱状简图(据张惠良等,2005陈锐明等,2011Bosboom et al., 2014a, 2014b, 2014c郭刚等,2014郭群英等,2014

    Figure 3. 

    Simplified regional lithostratigraphic framework from the Cretaceous to the present sedimentary rocks in the Qimugen oroclines of Southwest Tarim Basin (after Zhang et al., 2005; Chen et al., 2011; Bosboom et al., 2014a, 2014b, 2014c; Guo et al., 2014; Guo et al., 2014)

    图 4 

    塔西南齐姆根弧形构造最西端的北东—南西向地震剖面AA'(a)及构造解释图(b. 其中G1、G2为生长地层期次)

    Figure 4. 

    Un-interpretation of the seismic profile AA' (a) and structural interpretation of seismic line AA' (b, G1 and G2 is first and second time of the growth strata, respectively) from the Qimugen oroclines to Yinjisha anticline

    图 5 

    塔西南齐姆根弧形构造北东南西向地震剖面BB'(a)及解释图(b)

    Figure 5. 

    Un-interpretation of the seismic profile BB' (a) and structural interpretation of seismic line BB' (b) from the Qimugen oroclines to east to the Yinjisha anticline

    图 6 

    塔西南齐姆根弧形构造北东南西向地震剖面CC'(a)及解释图CC'(b)

    Figure 6. 

    Un-interpretation of the seismic profile CC' (a) and structural interpretation of seismic line CC' (b) from the Qimugen oroclines to east to the Yinjisha anticline

    图 7 

    塔西南齐姆根弧形构造北西南东西向地震解释剖面DD'(a)及局部放大解释图DD'(b)

    Figure 7. 

    Structural interpretation of seismic line DD' (a) from the west to the east and structural interpretation of local zoom's seismic profile form seismic line DD' (b) in the Qimugen oroclines

    图 8 

    齐姆根构造东侧近东西向地震剖面EE'(a)及解释图EE'(b)

    Figure 8. 

    Un-interpretation of the seismic profile EE' (a) and structural interpretation of seismic line EE' (b) from the west to the east in the Qimugen oroclines

    图 9 

    喀什—叶城走滑断层带对齐姆根单斜(以书斜模式代替,只显示平面分布状态)作用导致齐姆根弧形构造形成的简化书斜模式图

    Figure 9. 

    Sketches to illustrate a simple analogue for the deformation in the Qimugen monocline (parallel paper sheets) affected by the Kashi-Yecheng strike faulting in the west Kunlun

    图 10 

    西昆仑造山带齐姆根地区构造演化形成的简化立体模型

    Figure 10. 

    Simple evolution of block model interpreted from the 2D seismic data and well data of the Qimugen oroclines in the West Kunlun

  •  

    新疆地质矿产局. 1993. 新疆区域地质志. 北京: 地质出版社. 1-783.

    Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House. 1-783.

     

    陈汉林, 张芬芬, 程晓敢等. 2010. 帕米尔东北缘地区构造变形特征与盆山结构. 地质科学, 45(1): 102-112. http://www.dzkx.org/article/id/geology_8397

    Chen Hanlin, Zhang Fenfen, Cheng Xiaogan et al. 2010. The deformation features and basin range coupling structure in the northeastern Pamir tectonic belt. Chinese Journal of Geology, 45(1): 102-112. http://www.dzkx.org/article/id/geology_8397

     

    陈汉林, 陈沈强, 林秀斌. 2014. 帕米尔弧形构造带新生代构造演化研究进展. 地球科学进展, 29(8): 890-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408003.htm

    Chen Hanlin, Chen Shenqiang and Lin Xiubin. 2014. A review of the Cenozoic tectonic evolution of Pamir syntax. Advances in Earth Science, 29(8): 890-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408003.htm

     

    陈汉林, 李康, 李勇等. 2018. 西昆仑山前冲断带的分段变形特征及控制因素. 岩石学报, 34(7) : 1933-1942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807008.htm

    Chen Hanlin, Li Kang, Li Yong et al. 2018. The segmentation deformation of the thrust belt in front of western Kunlun, western China, and its controlling factors. Acta Petrologica Sinica, 34(7) : 1933-1942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807008.htm

     

    陈汉林, 陈亚光, 陈沈强等. 2019. 帕米尔弧形构造带的构造过程与地貌特征. 地球学报, 40(1): 55-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901005.htm

    Chen Hanlin, Chen Yaguang, Chen Shenqiang et al. 2019. The tectonic processes and geomorphic characteristics of Pamir salient. Acta Geoscientica Sinica, 40(1): 55-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901005.htm

     

    陈槚俊, 何登发. 2018. 乌泊尔断裂带构造几何学与运动学. 地质科学, 53(1): 25-45. http://www.dzkx.org/article/doi/10.12017/dzkx.2018.002

    Chen Jiajun and He Dengfa. 2018. Geometry and kinematics of Pamir frontal thrust zone. Chinese Journal of Geology, 53(1): 25-45. http://www.dzkx.org/article/doi/10.12017/dzkx.2018.002

     

    陈杰, 李涛, 李文巧等. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241-259. doi: 10.3969/j.issn.0253-4967.2011.02.001

    Chen Jie, Li Tao, Li Wenqiao et al. 2011. Late Cenozoic and present tectonic deformation in the Pamir salient, northwestern China. Seismology and Geology, 33(2): 241-259. doi: 10.3969/j.issn.0253-4967.2011.02.001

     

    陈锐明, 张克信, 陈奋宁等. 2011. 新疆其木干剖面新近纪沉积序列与西昆仑隆升的耦合. 地质科技情报, 30(4): 55-63. doi: 10.3969/j.issn.1000-7849.2011.04.008

    Chen Ruiming, Zhang Kexin, Chen Fenning et al. 2011. Neogene uplift of West Kunlun coupled to the sedimentary succession from Qimugan section, Xinjiang, NW China. Geological Science and Technology Information, 30(4): 55-63. doi: 10.3969/j.issn.1000-7849.2011.04.008

     

    程晓敢, 黄智斌, 陈汉林等. 2012. 西昆仑山前冲断带断裂特征及构造单元划分. 岩石学报, 28(8): 2591-2601. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208025.htm

    Cheng Xiaogan, Huang Zhibin, Chen Hanlin et al. 2012. Fault characteristics and division of tectonic units of the thrust belt in the front of the West Kunlun Mountains. Acta Petrologica Sinica, 28(8): 2591-2601. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208025.htm

     

    丁孝忠, 林畅松, 刘景彦等. 2011. 塔里木盆地白垩纪—新近纪盆山耦合过程的层序地层响应. 地学前缘, 18(4): 144-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104011.htm

    Ding Xiaozhong, Lin Changsong, Liu Jingyan et al. 2011. The sequence stratigraphic response to the basin-orogen coupling process of Cretaceous-Neogene in Tarim Basin, China. Earth Science Frontiers, 18(4): 144-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104011.htm

     

    范小根, 程晓敢, 陈汉林等. 2015. 塔西南新生代前陆盆地东段盆山结构与冲断带变形特征. 大地构造与成矿学, 39(2): 241-249 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201502004.htm

    Fan Xiaogen, Cheng Xiaogan, Chen Hanlin et al. 2015. Basin-range coupling structure and deformation features of the eastern Cenozoic foreland basin in SW Tarim. Geotectonica et Metallogenia, 39(2): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201502004.htm

     

    郭刚, 许应石, 欧健. 2014. 新疆塔里木盆地西南缘盆山结合带新生代盆地演化与青藏高原北缘隆升的关系. 西北地质, 47(4): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201404004.htm

    Guo Gang, Xu Yingshi and Ou Jian. 2014. Evolution of Cenozoic basin in basin-range junction belt of southwestern Tarim Basin and its relation with uplift of North Qinghai-Tibet Plateau. Northwestern Geology, 47(4): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201404004.htm

     

    郭群英, 李越, 张亮等. 2014. 塔里木盆地西南地区白垩系沉积相特征. 古地理学报, 16(2): 169-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201402004.htm

    Guo Qunying, Li Yue, Zhang Liang et al. 2014. Sedimentary facies characteristics of the Cretaceous in southwestern Tarim Basin. Journal of Palaeogeography, 16(2): 169-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201402004.htm

     

    胡建中, 谭应佳, 张平等. 2008. 塔里木盆地西南缘山前带逆冲推覆构造特征. 地学前缘, 15(2): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802030.htm

    Hu Jianzhong, Tan Yingjia, Zhang Ping et al. 2008. Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim Basin. Earth Science Frontiers, 15(2): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802030.htm

     

    李萌, 郭健, 汤良杰等. 2017. 西昆仑山北缘新生代隆升历史的裂变径迹证据. 科学技术与工程, 17(33) : 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201733002.htm

    Li Meng, Guo Jian, Tang Liangjie et al. 2017. Fission track evidence for Cenozoic uplift in the western Kunlun Mountains. Science Technology and Engineering, 17(33) : 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201733002.htm

     

    李向东, 王克卓. 2003. 帕米尔隆升过程中地壳的一种重要缩短机制——以齐姆根构造转换域为例. 新疆地质, 21(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200301003.htm

    Li Xiangdong and Wang Kezhuo. 2003. An important mechanism of crustal shortening during uplift of Pamir: Taking Qimugen tectonic transformation domain as an example. Xinjiang Geology, 21(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200301003.htm

     

    罗金海, 何登发. 1999. 西昆仑北缘冲断带和田段的构造特征. 石油与天然气地质, 20(3): 237-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199903012.htm

    Luo Jinhai and He Dengfa. 1999. Tectonic characteristics of foreland thrust belt in Hetian section, north margin of West Kunlun. Oil and Gas Geology, 20(3): 237-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199903012.htm

     

    曲国胜, 李亦纲, 张宁等. 2004. 塔里木西南缘(齐姆根弧)前陆构造及形成机理. 地质论评, 50(6): 567-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406002.htm

    Qu Guosheng, Li Yigang, Zhang Ning et al. 2004. A study on the foreland structure of the Qimugen arc in Southwest Tarim and its genetic mechanism. Geological Review, 50(6): 567-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406002.htm

     

    任宇泽, 林畅松, 高志勇等. 2017. 塔里木盆地西南坳陷白垩系层序地层与沉积充填演化. 天然气地球科学, 28(9): 1298-1311 https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201709002.htm

    Ren Yuze, Lin Changsong, Gao Zhiyong et al. 2017. Sequence stratigraphy and sedimentary filling evolution of the Cretaceous in Southwest Depression, Tarim Basin. Natural Gas Geoscience, 28(9): 1298-1311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201709002.htm

     

    王步清, 谢会文, 陈汉林等. 2011. 塔里木盆地西南坳陷周缘的滑脱构造. 地质科学, 46(3): 433-742. http://www.dzkx.org/article/id/geology_9175

    Wang Buqing, Xie Huiwen, Chen Hanlin et al. 2011. Decollement structure of Southwest Tarim depression and its periphery. Chinese Journal of Geology, 46(3): 433-742. http://www.dzkx.org/article/id/geology_9175

     

    王哲. 2014. 帕米尔突刺东缘晚新生代构造格架与演化(博士学位论文). 杭州: 浙江大学. 1-99.

    Wang Zhe. 2014. Late Cenozoic Structural Framework and Evolution Along the Eastern Margin of the Pamir Salient, Northwestern China (PhD Thesis). Hangzhou: Zhejiang University. 1-99.

     

    伍秀芳, 刘胜, 汪新等. 2004. 帕米尔—西昆仓北麓新生代前陆褶皱冲断带构造剖面分析. 地质科学, 39(2): 260-271. http://www.dzkx.org/article/id/geology_9530

    Wu Xiufang, Liu Sheng, Wang Xin et al. 2004. Analysis on structural sections in the Cenozoic Pamir-western Kunlun foreland fold and thrust belt. Chinese Journal of Geology, 39(2): 260-271. http://www.dzkx.org/article/id/geology_9530

     

    伍致中. 1996. 塔里木盆地西部及邻区构造形成机制. 新疆石油地质, 17(2): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD602.000.htm

    Wu zhizhong. 1996. Structuring mechanism in western Tarim Basin and its adjacent areas. Xinjiang Petroleun Geology, 17(2): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD602.000.htm

     

    向奎. 2006. 塔里木盆地西南边缘压扭构造体系及其石油地质意义. 古地理学报, 8(2): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200602011.htm

    Xiang Kui. 2006. Transpressional structural systems and their petroleum geological significance in southwestern margin of Tarim Basin. Journal of Palaeogeography, 8(2): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200602011.htm

     

    肖安成, 杨树锋, 陈汉林等. 2000. 西昆山山前冲断系的结构特征. 地学前缘, 7(增刊): 128-135.

    Xiao Ancheng, Yang Shufeng, Chen Hanlin et al. 2000. Structural characteristics of thrust system in the front of the West Kunlun Mountains. Earth Science Frontiers, 7(suppl.): 128-136.

     

    谢会文, 王春阳, 王智斌等. 2012. 基底滑脱层分布对褶皱冲断带变形影响的物理模拟研究: 以塔西南西昆仑山前褶皱冲断带为例. 高校地质学报, 18(4): 701-710. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201204012.htm

    Xie Huiwen, Wang Chunyang, Wang Zhibin et al. 2012. The effect of spatial distribution of basement detachment on deformation in a fold and thrust belt: An analogue modeling approach an example of West Kunlun fold-and-thrust belt. Geological Journal of China Universties, 18(4): 701-710. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201204012.htm

     

    杨庚, 陈竹新, 王晓波. 2020. 塔西南逆冲带前缘英吉沙背斜的多期变形. 新疆石油地质, 42(6): 656-665. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106003.htm

    Yang Geng, Chen Zhuxin and Wang Xiaobo. 2020. Multistage deformation of Yinjisha anticline in the front of southwestern Tarim thrust belt, Northwest China. Xinjiang Petroleum Geology, 42(6): 656-665. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106003.htm

     

    雍天寿, 1984. 塔里木地台晚白垩世—早第三纪岩相古地理概貌. 石油实验地质, 6(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198401001.htm

    Yong Tianshou. 1984. Lithofacies and paleogeography of the Late Cretaceous-Paleogene of the Tarim Platform. Experimental Petroleum Geology, 6(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198401001.htm

     

    岳勇, 徐勤琪, 傅恒等. 2017. 塔里木盆地西南部白垩系—古近系沉积特征与储盖组合. 石油实验地质, 39(3): 318-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201703005.htm

    Yue Yong, Xu Qinqi, Fu Heng et al. 2017. Reservoir-cap rock assemblage and sedimentary characteristics of Cretaceous-Paleogene in southwestern Tarim Basin. Petroleum Geology & Experiment, 39(3): 318-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201703005.htm

     

    张达景, 胡健民, 蒙义峰等. 2007. 塔里木盆地西南部齐姆根逆冲推覆构造的特征及其与油气的关系. 地质通报, 26(3): 266-274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200703002.htm

    Zhang Dajing, Hu Jianmin, Meng Yifeng et al. 2007. Characteristics of Qimugen thrust nappe structure in the southwestern Tarim Basin, Xinjiang, China, and its relationship with hydrocarbon. Geological Bulletin of China, 26(3): 266-274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200703002.htm

     

    张惠良, 沈扬, 张荣虎等. 2005. 塔里木盆地西南部昆仑山前下白垩统沉积相特征及石油地质意义. 古地理学报, 7(2): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200502002.htm

    Zhang Huiliang, Shen Yang, Zhang Ronghu et al. 2005. Characteristics of sedimentary facies and petroleum geological significance of the Lower Cretaceous in front of Kunlun Mountains in southwestern Tarim Basin. Journal of Palaeogeography, 7(2): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200502002.htm

     

    张克信, 王国灿, 骆满生等. 2010. 青藏高原新生代构造岩相古地理演化及其对构造隆升的响应. 地球科学, 35(5): 697-712. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005000.htm

    Zhang Kexin, Wang Guocan, Luo Mansheng et al. 2010. Evolution of tectonic lithofacies paleogeography of Cenozoic of Qinghai Tibet Plateau and its response to uplift of the plateau. Earth Science, 35(5): 697-712. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005000.htm

     

    张玮, 漆家福, 李勇. 2011. 塔里木盆地西南缘构造样式及其主导因素. 地质科学, 46(3): 723-732. http://www.dzkx.org/article/id/geology_9174

    Zhang Wei, Qi Jiafu and Li Yong. 2011. Structural style in south-western margin of Tarim Basin and their dominate factors. Chinese Journal of Geology, 46(3): 723-732. http://www.dzkx.org/article/id/geology_9174

     

    周在征, 裴军令, 李建锋等. 2016. 帕米尔东北缘晚新生代旋转运动新证据. 地球物理学报, 59(2): 633-642. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602021.htm

    Zhou Zaizheng, Pei Junling, Li Jianfeng et al. 2016. New evidence for rotation of northeastern Pamir since Late Cenozoic. Chinese Journal of Geophysics, 59(2): 633-642. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602021.htm

     

    周志毅. 2001. 塔里木盆地各纪地层. 北京: 科学出版社. 1-359.

    Zhou Zhiyi. 2001. Stratigraphy of the Tarim Basin. Beijing: Science Press. 1-359.

     

    Amidon W H and Hynek S A. 2010. Exhumational history of the north central Pamir. Tectonics, 29: TC5017. DOI:10.1029/2009TC002589.

     

    Avouac J P, Tapponnier P, Bai M et al. 1993. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 98(B4): 6755-6804. DOI:10.1029/92JB01963.

     

    Bande A, Sobel E R, Mikolaichuk A et al. 2015. Talas-Fergana Fault Cenozoic timing of deformation and its relation to Pamir indentation. Geological Society, London, Special Publications, 427(1): 295-311. DOI:10.1144/SP427.1.

     

    Bird P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research, 84(B13): 7561-7571. DOI:DOI:10.1029/JB084iB13p07561.

     

    Blayney T, Najman Y, Dupont-Nivet G et al. 2016. Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim Basin sedimentary record. Tectonics, 35(10): 2345-2369. DOI:10.1002/2016TC004222.

     

    Blayney T, Dupont-Nivet G, Najman Y et al. 2019. Tectonic evolution of the Pamir recorded in the western Tarim Basin (China): Sedimentologic and magnetostratigraphic analyses of the Aertashi section. Tectonics, 38(2): 492-515. DOI:10.1029/2018TC005146.

     

    Bosboom R E, Dupont-Nivet G, Houben A J P et al. 2011. Late Eocene sea retreat from the Tarim Basin (West China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3-4): 385-398. DOI:10.1016/j.palaeo.2010.11.019.

     

    Bosboom R, Dupont-Nivet G, Grothe A et al. 2014a. Linking Tarim Basin sea retreat (West China) and Asian aridification in the Late Eocene. Basin Research, 26(5): 621-640. DOI:10.1111/bre.12054.

     

    Bosboom R, Dupont-Nivet G, Grothe A et al. 2014b. Timing, cause and impact of the Late Eocene stepwise sea retreat from the Tarim Basin (West China). Palaeogeography, Palaeoclimatology, Palaeoecology, 403: 101-118. DOI:10.1016/j.palaeo.2014.03.035.

     

    Bosboom R, Dupont-Nivet G, Huang W T et al. 2014c. Oligocene clockwise rotations along the eastern Pamir: Tectonic and paleogeographic implications. Tectonics, 33(2): 53-66. DOI:10.1002/2013TC003388.

     

    Burtman V S. 2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319(2): 69-92. DOI:10.1016/S0040-1951(00)00022-6.

     

    Burtman V S and Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. GSA Special Papers, 281: 1-76. DOI:10.1130/SPE281-p1.

     

    Burtman V S, Skobelev S F and Molnar P. 1996. Late Cenozoic slip on the Talas-Ferghana fault, the Tien Shan, central Asia. GSA Bulletin, 108(8): 1004-1021. DOI:10.1130/0016-7606(1996)108<1004:LCSOTT>2.3.CO;2.

     

    Cai Z H, Xu Z Q, Cao H et al. 2017. Miocene exhumation of Northeast Pamir: Deformation and geo/thermochronological evidence from western Muztaghata shear zone and Kuke ductile shear zone. Journal of Structural Geology, 102: 130-146. DOI:10.1016/j.jsg.2017.07.010.

     

    Cao K, Wang G C, Bernet M et al. 2015. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen. Earth and Planetary Science Letters, 432: 391-403. DOI:10.1016/j.epsl.2015.10.033.

     

    Carey S W. 1955. The orocline concept in geotectonics-part I. Proceedings of the Royal Society of Tasmania, 89: 255-288.

     

    Chapman J B, Carrapa B, Ballato P et al. 2017. Intracontinental subduction beneath the Pamir Mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold and thrust belt. GSA Bulletin, 129(11-12): 1450-1471. DOI:10.1130/B31730.1.

     

    Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China. GSA Bulletin, 122(1-2): 145-161. DOI:10.1130/B26520.1.

     

    Dupont-Nivet G, Butler R F, Yin A et al. 2003. Paleomagnetism indicates no Neogene rotation of the northeastern Tibetan Plateau. Journal of Geophysical Research Atmospheres, 108(B8): 2386. DOI:10.1029/2003JB002399.

     

    Gilder S, Chen Y, Cogne J P et al. 2003. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron. Earth and Planetary Science Letters, 206(3-4): 587-600. DOI:10.1016/S0012-821X(02)01074-9.

     

    Graham S A, Chamberlain C P, Yue Y J et al. 2005. Stable isotope records of Cenozoic climate and topography, Tibetan plateau and Tarim Basin. American Journal of Science, 305(2): 101-118. DOI:10.2475/ajs.305.2.101.

     

    Heermance R V, Chen J, Burbank D W et al. 2007. Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Research, 19(4): 599-632. DOI:10.1111/j.1365-2117.2007.00339.x.

     

    Hindle H and Burkhard M. 1999. Strain, displacement and rotation associated with the formation of curvature on fold belts: The example of the Jura arc. Journal of Structural Geology, 21(8-9): 1089-1101. DOI:10.1016/S0191-8141(99)00021-8.

     

    Huang B C, Piper J D A, Wang Y et al. 2005. Paleomagnetic and geochronological constraints on the post-collisional northward convergence of the Southwest Tian Shan, NW China. Tectonophysics, 409(1-4): 107-124. DOI:10.1016/j.tecto.2005.08.018.

     

    Kent-Corson M L, Ritts B D, Zhuang G et al. 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 282(1-4): 158-166. DOI:10.1016/j.epsl.2009.03.011.

     

    Klocke M, Voigt T, Kley J et al. 2017. Cenozoic evolution of the Pamir and Tien Shan Mountains reflected in syntectonic deposits of the Tajik Basin. Geological Society, London, Special Publications, 427(1): 523-564. DOI:10.1144/SP427.7.

     

    Küfner S K, Schurr B, Sippl C et al. 2016. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth and Planetary Science Letters, 435: 171-184. DOI:10.1016/j.epsl.2015.11.046.

     

    Li Z Y, Ding L, Lippert P C et al. 2013. Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir Plateau from the western Kunlun Shan foreland. Tectonophysics, 603: 257-271. DOI:10.1016/j.tecto.2013.05.040.

     

    Johnston S T. 2001. The Great Alaskan terrane wreck: Reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth and Planetary Science Letters, 193: 259-272. DOI:10.1016/S0012-821X(01)00516-7.

     

    Johnston S T. 2004. The d􀆳Entrecasteaux orocline and rotation of the Vanuatu-New Hebrides arc: An oroclinal orgy and analogue for Archean craton formation. Geological Society of America Special Paper, 383: 225-236.

     

    Johnston S T, Weil A B and Gutierrez-Alonso G. 2013. Oroclines: Thick and thin. Geological Society of America Bulletin, 125(5-6): 643-663. DOI:10.1130/B30765.1.

     

    Macedo J M and Marshak S. 1999. Controls on the geometry of fold-thrust belt salient. Geological Society of America Bulletin, 111(12): 1808-1822. DOI:10.1130/0016-7606(1999)111<1808:COTGOF>2.3.CO;2.

     

    Marshak S. 1988. Kinematics of orocline and arc formation in thin-skinned orogens. Tectonics, 7(1): 73-86. DOI:10.1029/TC007i001p00073.

     

    Marshak S. 2004. Salients, recesses, arcs, oroclines, and syntaxes; a review of ideas concerning the formation of map-view curves in fold-thrust belts. American Association of Petroleum Geologists Memoir, 82: 131-156.

     

    Mohadjer S, Bendick R, Ischuk A et al. 2010. Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements. Geophysical Research Letters, 37: L04305. DOI:10.1029/2009GL041737.

     

    Mount V S, Kevin W M, Thomas W G et al. 2011. Basement-involved contractional wedge structural styles: Examples from the Hanna Basin, Wyoming. AAPG Memoir, 94: 271-281.

     

    Peltzer G and Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117. DOI:10.1029/JB093iB12p15085.

     

    Ries A C and Shackleton R M. 1976. Patterns of strain variation in arcuate fold belts. Philosophical Transactions of the Royal Society B, 283: 281-288. DOI:10.1098/RSTA.1976.0085.

     

    Robinson A C, Yin A, Manning C E et al. 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. GSA Bulletin, 116(7-8): 953-973. DOI:10.1130/B25375.1.

     

    Rumelhart P E, Yin A, Cowgill E et al. 1999. Cenozoic vertical-axis rotation of the Altyn Tagh fault system. Geology, 27(9): 819-822. DOI:10.1130/0091-7613(1999)027<0819:CVAROT>2.3.CO;2.

     

    Schurr B, Ratschbacher L, Sippl C et al. 2014. Seismotectonics of the Pamir. Tectonics, 33: 1501-1518. DOI:10.1002/2014TC003576.

     

    Shaw J, Connors C and Suppe J. 2005. Seismic interpretation of contractional fault-related folds. //Shaw J, Connors C, Suppe J. An AAPG Seismic Atlas Studies in Geology #53. The American Association of Petroleum Geologists. Tulsa, Oklahoma, U.S.A.

     

    Shen Z K, Wang M, Li Y et al. 2001. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. Journal of Geophysical Research: Solid Earth, 106(B12): 30607–30621. DOI:10.1029/2001JB000349.

     

    Sippl C, Schurr B, Yuan X et al. 2013. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data. Journal of Geophysical Research: Solid Earth, 118: 1438-1457, doi:10.1002/jgrb.50128.

     

    Sobel E R and Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision. Journal of Geophysical Research: Solid Earth, 102(B3): 5043-5063. DOI:10.1029/96JB03267.

     

    Sobel E R, Chen J and Heermance R V. 2006. Late Oligocene-Early Miocene initiation of shortening in the southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations. Earth Planetary Science Letters, 247(1-2): 70-81. DOI:10.1016/j.epsl.2006.03.048.

     

    Sobel E R, Schoenbohm L M, Chen J et al. 2011. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis. Earth Planetary Science Letters, 304(3-4): 369-378. DOI:10.1016/j. epsl.2011.02.012.

     

    Sobel E R, Chen J, Schoenbohm L M et al. 2013. Oceanic-style subduction controls Late Cenozoic deformation of the Northern Pamir orogen. Earth Planetary Science Letters, 363: 204-218. DOI:10.1016/j.epsl.2012.12.009.

     

    Strecker M R, Frisch W, Hamburger M W et al. 1995. Quaternary deformation in the eastern Pamir, Tadzhikistan and Kygyzstan. Tectonics, 14(5): 1061-1079. DOI:10.1029/95TC00927.

     

    Sun J M and Liu T S. 2006. The age of the Taklimakan desert. Science, 312(5780): 1621-1621. DOI:10.1126/science.1124616.

     

    Sun J M, Windley B F, Zhang Z L et al. 2016. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the Late Eocene. Journal of Asian Earth Sciences, 116: 222-231. DOI:10.1016/j.jseaes.2015.11.020.

     

    Suppe J, Chou G T and Hook S C. 1992. Rates of folding and faulting determined from growth strata. //McClay K R. Thrust tectonics. London: Chapman & Hall. 105-121.

     

    Thomas J C, Chauvin A, Gapais D et al. 1994. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia). Journal of Geophysical Research: Solid Earth, 99(B8): 15141-1560. DOI:10.1029/94JB00901.

     

    Wang Z and Wang X. 2016. Late Cenozoic deformation sequence of a thrust system along the eastern margin of Pamir, Northwest China. Acta Geologica Sinica, 90(5): 1664-1678. DOI:10.1111/1755-6724.12809.

     

    Wei H H, Meng Q R, Ding L et al. 2013. Tertiary evolution of the western Tarim Basin, Northwest China: A tectono-sedimentary response to northward indentation of the Pamir salient. Tectonics, 32: 558-575. DOI:10.1002/tect.20046.

     

    Weil A B and Sussman A J. 2004. Classifying curved orogens based on timing relationships between structural development and vertical axis rotations. Geological Society of America Special Papers, 383: 1-15. DOI:10.1130/0-8137-2383-3(2004)383[1:CCOBOT]2.0.CO;2.

     

    Wittlinger G, Vergne J, Tapponnier P et al. 2004. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth and Planetary Science Letters, 221(1-4): 117-130. DOI:10.1016/S0012-821X(03)00723-4.

     

    Yin A and Harrison M T. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth And Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211.

     

    Yin A, Yang Z, Butler R F et al. 2000. Correction of "Cenozoic vertical-axis rotation of the Altyn Tagh fault system" by Rumelhart P. E. et al., Geology, 27: 819-822, September 1999, Geology, 28(5): 480.

     

    Yin A, Robinson A, Manning C E. 2001. Oroclinal bending and slab-break-off causing coeval east-west extension and east-west contraction in the Pamir-Nanga Parbat syntaxsis in the past 10 m. y. American Geophysical Union: F1124.

     

    Yin A, Rumelhart P, Butler R E et al. 2002. Tectonic history of the Altyn Tagh fault system in the northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257-1295. DOI:10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2.

     

    Zheng H B, Powell C M, An Z S et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28: 715-718. DOI:10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2.

  • 加载中

(10)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-05-05
修回日期:  2023-02-24
刊出日期:  2023-04-01

目录