花岗岩可否分离结晶,有堆晶花岗岩吗?——评学术界最近的一些争论

张旗. 2023. 花岗岩可否分离结晶,有堆晶花岗岩吗?——评学术界最近的一些争论. 地质科学, 58(2): 319-346. doi: 10.12017/dzkx.2023.022
引用本文: 张旗. 2023. 花岗岩可否分离结晶,有堆晶花岗岩吗?——评学术界最近的一些争论. 地质科学, 58(2): 319-346. doi: 10.12017/dzkx.2023.022
Zhang Qi. 2023. Can granite be formed by fractional crystallization? Is there any cumulate granite? Comment on some recent debates in academic circles. Chinese Journal of Geology, 58(2): 319-346. doi: 10.12017/dzkx.2023.022
Citation: Zhang Qi. 2023. Can granite be formed by fractional crystallization? Is there any cumulate granite? Comment on some recent debates in academic circles. Chinese Journal of Geology, 58(2): 319-346. doi: 10.12017/dzkx.2023.022

花岗岩可否分离结晶,有堆晶花岗岩吗?——评学术界最近的一些争论

  • 基金项目:

    自然资源部深地科学与探测技术实验室开放课题项目(编号:Sinoprobe Lab-202211)资助

详细信息
    作者简介:

    张旗,男,1937年生,研究员,岩石学和地球化学专业。E-mail:zq1937@126.com

  • 中图分类号: P581

Can granite be formed by fractional crystallization? Is there any cumulate granite? Comment on some recent debates in academic circles

  • 花岗岩能否分离结晶?世界上有没有堆晶花岗岩?这是学术界长期争论的问题。从近期发表的文献判断,上述争论已经从国际学术界转入国内学术界。国际学术界一直坚持花岗岩能够分离结晶,笔者一直持反对意见。最近,关于堆晶花岗岩的说法突然盛行起来。什么是堆晶岩?堆晶与堆积是一回事吗?斜长石是堆晶矿物吗?这些问题都是需要认真讨论的。众所周知,玄武岩有堆晶岩,花岗岩则主要呈晶粥状态出现,这是两种岩浆粘性不同的表现。花岗岩由于粘性大,晶出的矿物不能下沉,与其晶出的岩浆一起构成类似粥状的面貌,故称为“晶粥”。玄武岩粘性低,晶出的矿物可以下沉离开其结晶的部位在岩浆房底部堆积形成堆晶岩,故玄武岩不形成晶粥。花岗岩形成晶粥后,由于冷却、固结而不可能再次升温熔融造成“晶”与“粥”分离的可能。因此,关于上有高分异花岗岩(或流纹岩),下有堆晶的花岗岩的说法是不可能成立的。堆晶岩、堆晶结构等,统统是外国学者创造的。毋庸置疑,外国学者对花岗岩研究有很大的贡献,现今花岗岩理论的成果基本上都是外国学者提出来的,我们只是在学习、仿效和跟踪。然而,花岗岩研究中也有许多错误的理论、模型、假说,毫无疑问也是外国学者提出来的。面对上述情况,我们只有一个办法:独立思考。学习是必须的,但是,要批判地学,要仔细地鉴别,取其精华,去其糟粕。这样,我们才能更快地进步,才能不至于跟着外国学者犯错误。

  • 加载中
  • 图 1 

    玄武岩岩浆分离结晶示意图(据张旗等,2008

    Figure 1. 

    Schematic diagram of basalt magma fractional crystallization(after Zhang et al., 2008)

    图 2 

    花岗岩猜测的分离结晶示意图(据张旗等,2008

    Figure 2. 

    Schematic diagram of separated crystallization of granite(after Zhang et al., 2008)

    图 3 

    苏丹巴尤达沙漠中一个三叠纪(236Ma)的多期侵入的RasedDom花岗岩—正长岩杂岩体(据Gill,2010

    Figure 3. 

    Sketch map of the Triassic(236 Ma)Ras ed Dom granite-syenite ring complex(after Gill,2010

    图 4 

    美国内华达Searchlight岩体剖面图(据吴福元等,2017

    Figure 4. 

    The profile of Searchlight pluton in Nevada, USA(after Wu et al., 2017)

    图 5 

    美国内华达Searchlight岩体剖野外关系图(据Miller and Miller, 2002修改)

    Figure 5. 

    Field evidence for interaction between mafic and felsic magmas of Searchlight pluton(modified after Miller and Miller, 2002)

    图 6 

    Searchlight深成岩体代表性元素数据(据Miller and Miller, 2002修改)

    Figure 6. 

    Representative elemental data for Searchlight pluton(modified after Miller and Miller, 2002)

    图 7 

    Sawmill Canyon岩体野外照片(据Huber et al., 1989

    Figure 7. 

    Field photos of the sheeted zones in Sawmill Canyon(after Huber et al., 1989)

    图 8 

    Sawmill Canyon岩体层状结构野外照片(据Huber et al., 1989

    Figure 8. 

    Field photos of layering in Sawmill Canyon(after Huber et al., 1989)

    图 9 

    所谓的花岗岩堆晶岩,堆晶结构的野外和镜下照片(据Vernon and Collins, 2011

    Figure 9. 

    Field and microscopic photos of so-called granite cumulate, cumulate texture(after Vernon and Collins, 2011)

    图 10 

    西藏Lhunze深成—次火山杂岩中二云母花岗岩的野外和薄片显微照片(据Liu et al., 2022

    Figure 10. 

    Field photographs and thin-section photomicrographs of the two-mica granites from the Lhunze plutonic-subvolcanic complex(after Liu et al., 2022)

    图 11 

    高温Yeoval Suite中Al2O3的变化图(据Chappell and Wyborn, 2004修改)

    Figure 11. 

    Variation diagram for Al2O3 in the high-temperature Yeoval Suite(modified after Chappell and Wyborn, 2004)

    图 12 

    高温Boggy Plain超单元和低温Cobargo单元的两个带状深成岩体中的Sr变化(据 Chappell and Wyborn, 2004修改)

    Figure 12. 

    Sr variation within two zoned plutons of the high temperature Boggy Plain Super suite and in the low temperature Cobargo Suite(modified after Chappell and Wyborn, 2004

    图 13 

    西藏隆子岩体与次火山岩杂岩微量元素图(据Liu et al., 2022修改)

    Figure 13. 

    Trace element content diagrams of granitic rock samples from the Lhunze plutonic-subvolcanic complex (modified after Liu et al., 2022)

    图 14 

    浙江大莱火山深成杂岩形成模式图(据Shi et al., 2022

    Figure 14. 

    The model of the volcanic plutonic complex in Dalai, Zhejiang Province(after Shi et al., 2022)

    图 15 

    高硅花岗岩(HSG)顺序形成的示意图(据Lee and Morton, 2015

    Figure 15. 

    Schematic cartoon(roughly to scale)illustrating the sequential formation of high silica granite(HSG)(after Lee and Morton, 2015)

    图 16 

    高硅花岗岩/流纹岩形成的晶粥体模型(据吴福元等,2017

    Figure 16. 

    The crystal-mush model formed by high silicon granite/rhyolite(from Wu et al., 2017)

  •  

    陈晨, 丁兴, 李睿等. 2018. 从物理视角看花岗质岩浆在非运移过程中的结晶分异. 中国科学: 地球科学, 48(3): 261-275. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201803001.htm

    Chen Chen, Ding Xing, Li Rui et al. 2018. Crystal fractionation of granitic magma during its non-transport processes: A physics-based perspective. Scientia Sinica Terrae, 48(3): 261-275. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201803001.htm

     

    陈璟元, 杨进辉, 张吉衡等. 2022. 挥发份对高硅岩浆演化趋势的制约: 以东南沿海白垩纪晚期花岗岩类岩石为例. 岩石学报. 38(5): 1460-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202205012.htm

    Chen Jingyuan, Yang Jinhui, Zhang Jiheng et al. 2022. The role of volatile in the evolution of high silicic magma: Insights from the Late Cretaceous granitoids in the coastal area of southeastern China. Acta Petrologica Sinica, 38(5): 1460-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202205012.htm

     

    华仁民. 2011. 关于花岗岩成因分类与花岗岩成矿作用若干基本问题的思考——与张旗先生等商榷. 矿床地质, 30(1): 163-170. doi: 10.3969/j.issn.0258-7106.2011.01.014

    Hua Renmin. 2011. On some basic problems related to the genetic classification and mineralization of granites: A discussion with Mr. Zhang Qi. Mineral Deposits, 30(1): 163-170. doi: 10.3969/j.issn.0258-7106.2011.01.014

     

    马昌前, 刘彬, 邹博文等. 2022. 如何从岩浆侵入体探究火山喷发机制?地球科学, 47(10): 3800-3803. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202210033.htm

    Ma Changqian, Liu Bin, Zou Bowen et al. 2022. How to study the mechanism of volcanic eruption from magma intrusion. Earth Sciences, 47(10): 3800-3803. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202210033.htm

     

    桑隆康, 马昌前. 2012. 岩石学. 北京: 地质出版社. 1-620.

    Sang Longkang and Ma Changqian. 2012. Petrology. Beijing: Geological Publishing House. 1-620.

     

    吴福元, 李献华, 杨进辉等. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    Wu Fuyuan, Li Xianhua, Yang Jinhui et al. 2007. Discussion on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

     

    吴福元, 刘小驰, 纪伟强等. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm

    Wu Fuyuan, Liu Xiaochi, Ji Weiqiang et al. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm

     

    曾令森, 高利娥, Saleeby J B. 2008. 变泥质岩递进部分熔融作用的构造物理学效应. 地质通报, 27(12): 1992-2000. doi: 10.3969/j.issn.1671-2552.2008.12.004

    Zeng Lingsen, Gao Li e and Saleeby J B. 2008. Progressive partial melting of metapelite and its tectonophysical effects. Geological Bulletin of China, 27(12): 1992-2000. doi: 10.3969/j.issn.1671-2552.2008.12.004

     

    张旗, 张魁武, 李达周. 1992. 横断山区镁铁—超镁铁岩. 北京: 科学出版社. 1-216.

    Zhang Qi, Zhang Kuiwu and Li Dazhou. 1992. Mafic-Ultramafic Intrusions in Hengduan Mountains. Beijing: Science Press. 1-216.

     

    张旗, 潘国强, 李承东等. 2007. 花岗岩结晶分离作用问题——关于花岗岩研究的思考之二. 岩石学报, 23(6): 1239-1251 doi: 10.3969/j.issn.1000-0569.2007.06.002

    Zhang Qi, Pan Guoqiang, Li Chengdong et al. 2007. Does fractional crystallization occur in granitic magma? Some crucial questions on granite study(2). Acta Petrologica Sinica, 23(6): 1239-1251. doi: 10.3969/j.issn.1000-0569.2007.06.002

     

    张旗, 王焰, 熊小林等. 2008. 埃达克岩和花岗岩: 挑战与机遇. 北京: 中国大地出版社. 1-344.

    Zhang Qi, Wang Yan, Xiong Xiaolin et al. 2008. Adakite and Granite: Challenge and Opportunity. Beijing: China Land Press. 1-344.

     

    张旗. 2012. 花岗质岩浆能够结晶分离和演化吗? 岩石矿物学杂志, 31(2): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202014.htm

    Zhang Qi. 2012. Could granitic magmas experience fractionation evolution? Acta Petrologica Et Mineralogica, 31(2): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201202014.htm

     

    张旗, 李承东. 2012. 花岗岩: 地球动力学意义. 北京: 海洋出版社. 1-275.

    Zhang Qi and Li Chengdong. 2012. Granites: Implications for Continental Geodynamics. Beijing: China Ocean Press. 1-275.

     

    张旗, 金惟浚, 李承东等. 2014a. "岩浆热场"说及其成矿意义(上). 甘肃地质, 23(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201401002.htm

    Zhang Qi, Jin Weijun, Li Chengdong et al. 2014a. The theory of "magma thermal field" and its metallogenic significance (1). Gansu Geology, 23(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201401002.htm

     

    张旗, 金惟浚, 李承东等. 2014b. "岩浆热场"说及其成矿意义(下). 甘肃地质, 23(2): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201402002.htm

    Zhang Qi, Jin Weijun, Li Chengdong. 2014b. The theory of "magma thermal field" and its metallogenic significance (2). Gansu Geology, 23(2): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201402002.htm

     

    张旗, 焦守涛, 李承东等. 2017. 花岗岩与大陆构造、岩浆热场与成矿. 岩石学报, 33(5): 1524-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705011.htm

    Zhang Qi, Jiao Shoutao, Li Chengdong et al. 2017. Granite and continental tectonics, magma-thermal field and metallgenesis. Acta Petrologica Sinica, 33(5): 1524-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705011.htm

     

    张旗, 焦守涛. 2020. 埃达克岩来自高压背景——一个科学的、可靠的、有预见性的科学发现. 岩石学报, 36(6): 1675-1683 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006002.htm

    Zhang Qi and Jiao Shoutao. 2020. Adakite comes from a high pressure back ground: A scientific, reliable, predictable scientific discovery. Acta Petrologica Sinica, 36(6): 1675-1683. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006002.htm

     

    张旗, 翟明国, 魏春景等. 2022. 一个新的花岗岩成因分类: 基于变质岩深熔作用理论与大数据的证据. 地学前缘, 29(4): 319-329 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204027.htm

    Zhang Qi, Zhai Mingguo, Wei Chunjing et al. 2022. An Innovative Petrogenetic Classification of Granitoids: Perspective from metamorphic anataxis and big data. Earth Science Frontiers, 29(4): 319-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204027.htm

     

    张旗, 原杰, 汤军等. 2023. 花岗岩, 明天我们如何研究?矿物与岩石地球化学通报, 待刊.

    Zhang Qi, Yuan Jie, Tang Jun et al. 2023. How to study granite in the future? Bulletin of Mineralogy, Petrology and Geochemistry, in press.

     

    郑世帅, 徐夕生. 2021. 浙东晚白垩世小雄破火山中火山—侵入杂岩的岩石成因. 岩石学报, 37(12): 3712-3734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202112008.htm

    Zheng Shishuai and Xu Xisheng. 2021. Petrogenesis of Late Cretaceous volcanic-plutonic complex from Xiaoxiong caldera in East Zhejiang. Acta Petrologica Sinica, 37(12): 3712-3734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202112008.htm

     

    Bachmann O and Bergantz G W. 2004. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. Journal of Petrology, 45(8): 1565-1582. DOI:10.1093/petrology/egh019.

     

    Bachmann O and Hube C. 2019. The inner workings of crustal distillation columns: The physical mechanisms and rates controlling phase separation in silicic magma reservoirs. Journal of Petrology, 60(1): 3-18, DOI: 10.1093/petrology/egy103.

     

    Bagnold R A. 1954. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London, 225(1160): 49-63. DOI:10.1098/rspa.1954.0186.

     

    Bateman P C. 1992. Plutonism in the central part of the Sierra Nevada Batholith, California. U. S. Geological Survey Professional Paper 1483. DOI: 10.3133/pp1483.

     

    Beane R and Wiebe R A. 2012. Origin of quartz clusters in Vinalhaven granite and porphyry, coastal Maine. Contributions to Mineralogy and Petrology, 163: 1069-1082. DOI:10.1007/s00410-011-0717-1.

     

    Becker G F. 1897. Fractional crystallization of rocks. American Journal of Science, 4(22): 257-261. DOI:10.2475/ajs.s4-4.22.257.

     

    Blundy J and Cashman K. 2001. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986. Contributions to Mineralogy and Petrology, 140: 631-650. DOI:10.1007/s004100000219.

     

    Bowen N L. 1912. The order of crystallization in igneous rocks. The Journal of Geology, 20: 457-468.

     

    Bowen N L. 1928. The Evolution of the Igneous Rocks. Princeton: Princeton University Press.

     

    Brown M. 1994. The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens. Earth-Science Reviews, 36(1-2): 83-130.

     

    Chappell B W and Wyborn D. 2004. Cumulate and cumulative granites and associated rocks. Resource Geology, 54(3), 227-240. DOI:10.1111/j.1751-3928.2004.tb00204.x.

     

    Chen J Y, Yang J H, Zhang J H et al. 2021. Generation of Cretaceous high-silica granite by complementary crystal accumulation and silicic melt extraction in the coastal region of southeastern China. GSA Bulletin, 134(1-2): 201-222. DOI:10.1130/B35745.1.

     

    Clemens J D and Petford N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Journal of the Geological Society, 156(6): 1057-1060. DOI:10.1144/gsjgs.156.6.1057.

     

    Cloos E. 1936. Der Sierra Nevada Pluton in California. Neues Jarbuch fur Mineralogie, geologie und Paleontologie, Abhandlungen, 76B: 355-450

     

    Cobbing J. 2000. The Geology and Maping of Granite Batholiths. Berlin, Heidelberg: Springer. 1-141. DOI: 10.1007/3-540-45055-6.

     

    Coleman D S, Gray W and Glazner A F. 2004. Rethinkingc the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California. Geology, 32(5): 433-436. DOI:10.1130/G20220.1.

     

    Craxton C W. 1968. Mineral layering in the Galway Granite, Connemara, Eire. <i>Geological Magazine</i>, 105(2): 149-159. DOI:

     

    Elburg M A and Nicholls I A. 1995. Origin of microgranitoid enclaves in the S-type Wilsons Promontory Batholith, Victoria: Evidence for magma mingling. Australian Journal of Earth Sciences, 42(4): 423-435. DOI: 10.1080/08120099508728212.

     

    Emeleus C H. 1963. Structural and petrological observations on layered granites from southern Greenland. Mineralogical Society of America, Special Paper 1: 22-29

     

    Gan C S, Wang Y J, Qian X et al. 2022. Diorite enclaves and host granite of the Early Miocene Gorontalo pluton in the North Sulawesi Arc, Indonesia: Implications for recycled oceanic crust and crust-mantle interaction. Journal of Asian Earth Sciences, 227: 105101. DOI:10.1016/j.jseaes.2022.105101.

     

    Gill R. 2010. Igneous Rocks and Processes: A Practical Guide. Hoboken, New Jersey: Wiley-Blackwell. 1-440.

     

    Glazner A F, Bartley J M, Coleman D S et al. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today, 14: 4-11. DOI:10.17615/nspy-zk53.

     

    Graeter K A, Beane R J, Deering C D et al. 2015. Formation of rhyolite at the Okataina volcanic complex, New Zealand: New insights from analysis of quartz clusters in plutonic lithics. American Mineralogist. 100(8-9): 1778-1789. DOI:10.2138/am-2015-5135.

     

    Gu D X, Zhang J J, Lin C et al. 2022. Petrogenesis of monzonites and leucogranites in the Ama Drime Massif: Implications for sources and differentiation of Himalayan leucogranites. Journal of Asian Earth Sciences, 237: 105372. DOI:10.1016/j.jseaes.2022.105372.

     

    Handy M R. 1990. The solid-state flow of polymineralic rocks. Journal of Geophysical Research, 95: 8467-8661. DOI:10.1029/JB095iB06p08647.

     

    Handy M R, Wissing S and Streit J E. 1999. Strength and structure of mylonite with combined frictional-viscous rheology and varied bimineralic composition. Tectonophysics, 303(1-4): 175-192. DOI: 10.1016/S0040-1951(98)00251-0.

     

    Harker A. 1909. The Natural History of Igneous Rocks. London: Cambridge University Press. DOI: 10.1017/CBO9780511920424. 1-384.

     

    Harris N B W, Pearce J A and Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. //Coward M P and Ries A C. Collision Tectonics. Geological Society of London Special Publication. 19: 67-81.

     

    Harry W T and Emeleus C H. 1960. Mineral layering in some granite intrusions of SW Greenland. //International Geological Congress 21st Session 4, Norden. 172-181

     

    Hildreth W. 2004. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems. Journal of Volcanology and Geothermal Research, 136(3-4): 169-198. DOI: 10.1016/j.jvolgeores.2004.05.019.

     

    Hollister L S and Crawford M L. 1986. Melt enhanced deformation: A major tectonic process. Geology, 14(7): 558-561. DOI:10.1130/0091-7613(1986)14<558:MDAMTP>2.0.CO;2.

     

    Hollister L S. 1993. The role of melt in the uplift and exhumation of orogenic belts. Chemical Geology, 108(1-4): 31-48. DOI:10.1016/0009-2541(93)90316-B.

     

    Huber N K, Bateman P C and Wahrhaftig C. 1989. Geologic map of Yosemite National Park and vicinity, California. U.S. Geological Survey Miscellaneous Investigations Series Map I-1874, scale 1: 125, 000.

     

    Ji Z, Ge W C, He Y et al. 2021. Mixing of cognate magmas as a process for producing high-silica granites: Insights from Guanmenshan Complex in Liaodong Peninsula, China. Lithos, 406-407: 106495. DOI: 10.1016/j.lithos.2021.106495.

     

    Lee C T A and Bachmann O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters, 393: 266-274. DOI: 10.1016/j.epsl.2014.02.044.

     

    Lee C T A and Morton D M. 2015. High silica granites: Terminal porosity and crystal settling in shallow magma chambers. Earth and Planetary Science Letters, 409: 23-31. DOI:10.1016/j.epsl.2014.10.040.

     

    Liang C H, Xu X S and He Z Y. 2022. Connected volcanic and plutonic association by crystal-melt segregation in the Daiyunshan volcanic field, SE China. Tectonophysics, 836: 229409. DOI:10.1016/j.tecto.2022.229409.

     

    Liu X C, Wu F Y, Kohn M J et al. 2022. Plutonic-subvolcanic connection of the Himalayan leucogranites: Insights from the Eocene Lhunze complex, southern Tibet. Lithos, 434-435: 106939. DOI:10.1016/j.lithos. 106939.

     

    Lu T Y, He Z Y and Klemd R. 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2): 216-221. DOI:10.1130/G49434.1.

     

    Miller C F and Miller J S. 2002. Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos, 61(3-4): 209-224. DOI:10.1016/S0024-4937(02)00080-4.

     

    Miller C F and Wark D A. 2008. Supervolcanoes and their explosive supereruptions. Elements, 4(1): 11-15. DOI:10.2113/GSELEMENTS.4.1.11.

     

    Pearce J A, Lippard S J and Roberts S. 1984a. Characteristics and tectonic significance of supra-subduction zone ophiolites. //Kokelaar B P and Howells M F. Marginal Basin Geology. London: Geological Society, London Special Publication. 16: 77-94

     

    Pearce J A, Harris N B W and Tindle A G. 1984b. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956.

     

    Petford N, Clemens J D and Vigneresse J L. 1997. Application of information theory to the formation of granitic rocks. //Bouchez J L, Hutton D H W and Stephens W E. Granite: From Segregation of Melt to Emplacement Fabrics. Kluwer, Dordrecht: Springer. 3-10.

     

    Petford N, Cruden A R, McCaffrey K J W et al. 2000. Granite magma formation, transport and emplacement in the Earth s crust. Nature, 408: 669-673. DOI:10.1038/35047000.

     

    Petford N. 2003. Rheology of granitic magmas during ascent and emplacement. Annual Review of Earth and Planetary Sciences, 31: 399-427. DOI: 10.1146/annurev.earth.31.100901.141352.

     

    Pitcher W S. 1997. The Nature and Origin of Granite. Boca Raton: Chapman & Hall. 1-387.

     

    Reid J B, Murry D P, Hermes O D et al. 1993. Fractional crystallization in granites of the Sierra Nevada: How important is it? Geology, 21(7): 587-590. DOI:10.1130/0091-7613(1993)021<0587:FCIGOT>2.3.CO;2.

     

    Ruprecht P and Bachmann O. 2010. Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology, 38: 919-922. DOI:10.1130/g31110.1.

     

    Sawyer E W. 1994. Melt segregation in the continental crust. Geology, 22(11): 1019-1022. DOI: 10.1130/0091-7613(1994)022<1019:MSITCC>2.3.CO;2.

     

    Scaillet B, Holtz F, Pichavant M et al. 1996. Viscosity of Himalayan leucogranites: Implications for mechanisms of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101: 27691-27699. DOI: 10.1029/96JB01631.

     

    Schaen A J, Singer B S, Cottle J M et al. 2018. Textural and mineralogical record of low-pressure melt extraction and silicic cumulate formation in the Late Miocene Risco Bayo-Huemul plutonic complex, southern Andes. Journal of Petrology, 59(10): 1991-2016. DOI:10.1093/petrology/egy087.

     

    Shi H Y, Xia Y, Xu X S et al. 2022. Crystal-melt separation of the Cretaceous volcanic-plutonic complex in SE China: High Sr/Y rocks generated by plagioclase accumulation. Lithos, 430-431: 106848. DOI: 10.1016/j.lithos.2022.106848.

     

    Sigmundsson F, Hreinsdóttir S, Hooper A et al. 2010. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature, 468(7322): 426-430. DOI:10.1038/nature09558.

     

    Taylor W P. 1976. Intrusion and differentiation of granite magma at a high level in the crust: The Puscao Pluton, Lima Province, Peru. Journal of Petrology, 17: 194-218. DOI:10.1093/petrology/17.2.194.

     

    Vernon R H. 2000. Review of microstructural evidence of magmatic and solid-state flow. Visual Geosciences, 5: 1-23. DOI:10.1007/s10069-000-0002-3.

     

    Vernon R H and Collins W J. 2011. Structural criteria for identifying granitic cumulates. The Journal of Geology, 119(2): 127-142. DOI:10.1086/658198.

     

    Vigneresse J L, Barbey P and Cuney M. 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology, 37(6): 1579-1600. DOI: 10.1093/petrology/37.6.1579.

     

    Wager L R and Brown G M. 1968. Layered Igneous Rocks. Edinburgh: Oliver and Boyd. 1-588.

     

    Waight T E, Maas R and Nicholls I A. 2001. Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia. Lithos, 56(2-3): 165-186. DOI: 10.1016/S0024-4937(00)00053-0.

     

    Wickham S M. 1987. The segregation and emplacement of granitic magmas. Journal of the Geological Society, 144(2): 281-297. DOI:10.1144/gsjgs.144.2.0281.

     

    Xu H, Qiu J S, Wang X L et al. 2022. Slow crystal settling controls the diversity of high-silica granites of the Late Cretaceous Shengsi Pluton at northeastern tip of Southeast China. Journal of Asian Earth Sciences, 223: 104986. DOI:10.1016/j.jseaes.2021.104986.

     

    Zhang X S, Xu X S and Zhao K. 2022. The strongly peraluminous, garnet-bearing norite- quartz jotunite-charnockite suite: Products of crystal accumulation in the felsic magma reservoir. Contributions to Mineralogy and Petrology, 177 (9): 1-29. DOI:10.1007/s00410-022-01946-1.

     

    Zhao K, Xu X S and Saskia E. 2018. Thermodynamic modeling for an incrementally fractionated granite magma sstem : implications for the origin of igneous charnockite. Earth and Planetary Science Letters, 499: 230-242. DOI: 10.1016/j.epsl.2018.07.039.

  • 加载中

(16)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-11-05
修回日期:  2023-02-13
刊出日期:  2023-04-01

目录