台湾中央山脉东部变质作用及热演化:玉里缝合带的俯冲折返作用

张艺琼, 何登发, Kamil Ustaszewski, 赵伦, 计智锋, 王震. 2023. 台湾中央山脉东部变质作用及热演化:玉里缝合带的俯冲折返作用. 地质科学, 58(1): 289-304. doi: 10.12017/dzkx.2023.020
引用本文: 张艺琼, 何登发, Kamil Ustaszewski, 赵伦, 计智锋, 王震. 2023. 台湾中央山脉东部变质作用及热演化:玉里缝合带的俯冲折返作用. 地质科学, 58(1): 289-304. doi: 10.12017/dzkx.2023.020
Zhang Yiqiong, He Dengfa, Kamil Ustaszewski, Zhao Lun, Ji Zhifeng, Wang Zhen. 2023. Thermal evolution of the metamorphism in the eastern Taiwan Central Range : Implications for Yuli Belt exhumation. Chinese Journal of Geology, 58(1): 289-304. doi: 10.12017/dzkx.2023.020
Citation: Zhang Yiqiong, He Dengfa, Kamil Ustaszewski, Zhao Lun, Ji Zhifeng, Wang Zhen. 2023. Thermal evolution of the metamorphism in the eastern Taiwan Central Range : Implications for Yuli Belt exhumation. Chinese Journal of Geology, 58(1): 289-304. doi: 10.12017/dzkx.2023.020

台湾中央山脉东部变质作用及热演化:玉里缝合带的俯冲折返作用

  • 基金项目:

    德国科学院Deutsche Forschungsgemeinschaft(DFG)项目(编号:380155214)资助

详细信息
    作者简介:

    张艺琼,女,1990年生,博士,构造地质学专业。E-mail:cugbzyq@163.com

  • 中图分类号: P588.3

Thermal evolution of the metamorphism in the eastern Taiwan Central Range : Implications for Yuli Belt exhumation

  • 中国台湾中央山脉东部出露的玉里变质带作为板块构造的缝合带,拼接了欧亚大陆板块、俯冲的南海板块、未俯冲的弧前基底和菲律宾海板块(吕宋岛弧),是认识台湾造山运动地球动力学重建的关键。玉里变质带出露含蓝片岩相的铁镁质—超铁镁质变质火成岩块体,这些块体在构造上被以绿片岩相为主的多期变形的云母石英片岩所包围。而玉里带东南侧发育了以云母石英片岩、千枚岩为主的初来组地层,初来组地层是否属于玉里带近年来仍然存在争议。为了解决这一问题,本文对台湾玉里带及其周缘地区的构造演化重新研究,针对中央山脉东部玉里带和初来组地层分别采样,利用碳质物质拉曼光谱温度计(RSCM)计算出变质片岩峰值变质温度的均值。结果表明:玉里带的峰值变质温度范围在400 ℃~550 ℃之间,比台湾地区的其它次级构造单元温度高;玉里带内,峰值变质温度高于500 ℃的地区毗邻玉里带的3个最大的高压变质火成岩块体,说明高压变质块体可能存在与围岩之间的交代变质作用;初来组地层的峰值变质温度约为360 ℃,与玉里带的温差达100 ℃以上,说明初来组地层与玉里带是两个不同的次级单元,在中央山脉东南缘二者之间很可能是断层接触,在台湾造山带向东的反冲褶皱逆冲带变形之后,这两个单元可能经历了相同的形变历史。本次更新的峰值变质温度集合了台湾地区的所有已发表的RSCM数据,显示出横跨台湾东部中央山脉热演化的系统性空间展布,重新修正了台湾中央山脉东部地质图。

  • 加载中
  • 图 1 

    台湾岛次级构造单元划分图(a)和台湾岛RSCM温度分布图(b)

    Figure 1. 

    Tectonic map of Taiwan Island(a) and map of peak temperatures in eastern Taiwan Island(b)obtained from RSCM

    图 2 

    台湾拉库拉库溪及清水溪地区地质图及地质剖面(A-B、C-D)

    Figure 2. 

    Geological map and cross sections(A-B and C-D)in the Lakulaku Hsi and Chinsui Hsi areas

    图 3 

    台湾玉里带及周边地区样品的代表性显微特征照片(每组样品图片左侧为单偏光,右侧为正交光)

    Figure 3. 

    Representative microscopic features of black schists(Images on the left are in plane-polarized light, and on the right are in cross-polarized light)

    图 4 

    部分采集样品RSCM实验的典型光谱特征

    Figure 4. 

    Representative Raman spectra of the carbonaceous materials in partial samples

    图 5 

    台湾新武吕溪地区地质图及地质剖面(E-F)

    Figure 5. 

    Geological map and the cross-section E-F of the Xinwuliu Hsi area

    图 6 

    台湾脊梁山脉中初来组及碧绿山组地层野外露头特征及构造解析(露头位置位置见图 2图 5

    Figure 6. 

    Outcrops and equal area, lower hemisphere("Schmidt net")projections of Chulai and Pilushan formations within the backbone slates considered representative for map-scale structures(outcrops location in Fig. 2, Fig. 5)

    图 7 

    台湾拉库拉库溪附近初来组及玉里带地层野外露头特征及韧性剪切变形构造(露头的位置见图 2

    Figure 7. 

    Field photos of the Chulai Formation and the Yuli Belt in the Lakulaku area, showing example of ductile shear zone

    图 8 

    台湾岛中央山脉东部的RSCM变质峰值温度等值线

    Figure 8. 

    RSCM temperature contours in the eastern Taiwan Central Range

    图 9 

    台湾玉里带岩石圈尺度的运动学模型(据Zhang et al.,2020修改)

    Figure 9. 

    Lithosphere-scale kinematic model to explain the origin of the Yuli belt of Taiwan(modified after Zhang et al., 2020).

    图 10 

    台湾中央山脉东侧的简易运动学概念模型(据Zhang et al.,2020修改)

    Figure 10. 

    Conceptual kinematic model to explain the Yuli belt exhumation and structural position(modified after Zhang et al., 2020)

    表 1 

    本文样品的RSCM计算结果

    Table 1. 

    RSCM data of the sixteen samples with point measurements

    样品编号 岩性 经度 纬度 光谱分析数量 R2值 方差 峰值温度T/ ℃ 标准差1σ/ ℃
    YQ17-3 钠长石石英云母片岩 121.4995 23.97566 100 0.36 0.0482 477 22
    YQ17-09 云母石英片岩 121.5004 23.97814 107 0.53 0.0425 401 19
    YQ17-10b 云母石英片岩 121.4966 23.96673 69 0.46 0.0276 432 13
    YQ17-12b 云母石英片岩 121.2798 23.28852 81 0.50 0.0477 415 22
    YQ17-15 云母石英片岩 121.2082 23.27108 61 0.66 0.0077 347 3
    YQ17-23a 滑石片岩 121.1935 23.26975 62 0.30 0.0366 506 16
    YQ17-28 钠长石石英云母片岩 121.2908 23.30152 80 0.28 0.0379 516 17
    YQ17-29 云母石英片岩 121.2073 23.34856 62 0.64 0.0160 350 7
    YQ18-01a 云母石英片岩 121.2012 23.34496 31 0.45 0.0468 435 21
    YQ18-02 云母石英片岩 121.1989 23.33840 47 0.46 0.0400 433 18
    YQ18-03 云母石英片岩 121.2483 23.31024 47 0.44 0.0410 440 19
    YQ18-05 石英云母片岩 121.3964 23.83747 70 0.56 0.0483 386 22
    YQ18-09 云母石英片岩 121.3885 23.83799 61 0.45 0.0364 436 17
    YQ18-11 云母石英片岩 121.3854 23.84000 57 0.47 0.0574 427 26
    YQ18-12 云母石英片岩 121.3851 23.84037 61 0.41 0.0779 455 35
    YQ18-13a 云母石英片岩 121.4995 23.97566 66 0.47 0.0347 426 16
    下载: 导出CSV
  •  

    周瑞炖, 林朝棨. 1974. 台湾地质. 台北: 台湾文献委员会. 1-450.

    Zhou Ruidun and Lin Chaoqi. 1974. Geology of Taiwan. Taibei: Taiwan Provincial Documentary Committee. 1-450.

     

    Beyssac O, Goffé B, Chopin C et al. 2002. Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20(9): 859-871. DOI:10.1046/j.1525-1314.2002.00408.x.

     

    Beyssac O, Simoes M, Avouac J P et al. 2007. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6): TC6001. DOI:10.1029/2006TC002064.

     

    Beyssac O, Negro F, Simoes M Y et al. 2008. High-pressure metamorphism in Taiwan: From oceanic subduction to arc-continent collision? Terra Nova, 20(2): 118-125. DOI:10.1111/j.1365-3121.2008.00796.x.

     

    Chang S S and Chi W R. 1983. Neogene Nannoplankton biostratigraphy in Taiwan and the tectonic implications. Petroleum Geology of Taiwan, 19: 93-147.

     

    Chen W S, Chung S L, Chou H Y et al. 2017. A reinterpretation of the metamorphic Yuli belt: Evidence for a Middle-Late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2): 188-206. DOI:10.1002/2016TC004383.

     

    Chen C T, Chan Y C, Beyssac O et al. 2019. Thermal history of the northern Taiwanese slate belt and implications for wedge growth during the Neogene arc-continent collision. Tectonics, 38(9): 3335-3350. DOI:10.1029/2019TC005604.

     

    Chim L K, Yen J Y, Huang S Y et al. 2018. Using Raman spectroscopy of carbonaceous materials to track exhumation of an active orogenic belt: An example from eastern Taiwan. Journal of Asian Earth Sciences, 164: 248-259. DOI: 10.1016/j.jseaes.2018.06.030.

     

    Conand C, Mouthereau F, Ganne J et al. 2020. Strain partitioning and exhumation in oblique Taiwan collision: Role of rift architecture and plate kinematics. Tectonics, 39(4): e2019TC005798. DOI:10.1029/2019TC005798.

     

    Dadson S J, Hovius N, Chen H et al. 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426: 648-651. DOI:10.1038/nature02150.

     

    Ernst W G and Jahn B M. 1987. Crustal accretion and metamorphism in Taiwan, a post-Palaeozoic mobile belt. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 321: 129-161. DOI:10.1098/rsta.1987.0008.

     

    Faryad S W and Kachlík V. 2013. New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s)in the Bohemian Massif. Journal of Metamorphic Geology, 31(1): 63-82. doi:10.1111/jmg.12009.

     

    Froitzheim N, Pleuger J, Roller S et al. 2003. Exhumation of high- and ultrahigh-pressure metamorphic rocks by slab extraction. Geology, 31(10): 925-928. DOI:10.1130/G19748.1.

     

    Fuller C W, Willet S D, Fisher D et al. 2006. A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1-4): 1-24. DOI:10.1016/j.tecto.2006.05.018.

     

    Henry D G, Jarvis I, Gillmore G et al. 2019. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198: 102936. DOI:10.1016/j.earscirev.2019.102936.

     

    Ho C S. 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1): 1-16. DOI:10.1016/0040-1951(86)90004-1.

     

    Huang C Y, Yuan P B and Tsao S J. 2006. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4): 274-288. DOI:10.1130/b25527.1.

     

    Kouketsu Y, Tsai C H and Enami M. 2019. Discovery of unusual metamorphic temperatures in the Yuli belt, eastern Taiwan: New interpretation of data by Raman carbonaceous material geothermometry. Geology, 47(6): 522-526. DOI:10.1130/G45934.1.

     

    Krohe A. 1996. Variscan tectonics of central Europe: Post accretionary intraplate deformation of weak continental lithosphere. 15(6): 1364-1388. DOI: 10.1029/96TC01110.

     

    Lahfid A, Beyssac O, Deville E et al. 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22 (5) : 354-360. DOI: 10.1111/j.1365-3121.2010.00956.x.

     

    Lin C W and Chen W S. 2016. Geologic Map of Taiwan. Taibei: Geological Society of Taiwan.

     

    Liou J G, Ho C O and Yen T P. 1975. Petrology of some glaucophane schists and related rocks from Taiwan. Journal of Petrology, 16(1): 80-109. DOI:10.1093/petrology/16.1.80.

     

    Mesalles L, Lee Y H, Ma T C et al. 2020. A Late-Miocene Yuli Belt? New constraints on the eastern central range depositional ages. Atmospheric and Oceanic Sciences, 31(4): 403-414. DOI:10.3319/TAO.2019.06.24.01.

     

    O'Brien P J. 2019. Eclogites and other high-pressure rocks in the Himalaya: A review. Geological Society, London, Special Publications, 483: 183-213. DOI:10.1144/SP483.13.

     

    Resentini A, Malusà M G and Garzanti E. 2020. Ongoing exhumation of the Taiwan orogenic wedge revealed by detrital apatite thermochronology: The impact of effective mineral fertility and zero-track grains. Earth and Planetary Science Letters, 544: 116374. DOI:10.1016/j.epsl.2020.116374.

     

    Sandmann S, Nagel T J, Froitzheim N et al. 2015. Late Miocene to Early Pliocene blueschist from Taiwan and its exhumation via forearc extraction. Terra Nova, 27(4): 285-291. DOI:10.1111/ter.12158.

     

    Şengör A M C and Natal'in B. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. DOI:10.1146/annurev.earth.24.1.263.

     

    Shyu J B H, Sieh K, Chen Y G et al. 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. JGR: Solid Earth, 110: B08402. DOI:10.1029/2004JB003251.

     

    Sibuet J C, Hsu S K, Pichon X L et al. 2002. East Asia platetectonics since 15 Ma: Constraints from the Taiwan region. Tectonophysics, 344(1-2): 103-134. DOI:10.1016/S0040-1951(01)00202-5.

     

    Stanley R S, Hill L B, Chang H C et al. 1981. A transect through the metamorphic core of the central mountains, southern Taiwan. Memoir of the Geological Society of China, 4: 443-473.

     

    Suppe J. 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Geological Society of China Memoir, 6: 131-146.

     

    Syu B Y. 2009. Preliminary Discussion on X-ray Diffraction Pattern and Raman Spectrum of Carbonaceous Materials in Metamorphic Complexes in Juisui and Wanjun, Taiwan (Master's Thesis). Taibei: National Taiwan Normal University. 1-59.

     

    Taylor B and Hayes D E. 1983. Origin and history of South China Sea Basin. // Hayes. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington D C: AGU. 23-56. DOI: 10.1029/gm027p0023.

     

    Tsai C H, Lizuka Y and Ernst W G. 2013. Diverse mineral compositions, textures, and metamorphic P-T conditions of the glaucophane bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan. Journal of Asia Earth Sciences, 63: 218-233. DOI:10.1016/j.jseaes.2012.09.019.

     

    Wopenka B and Pasteris J D. 1993. Structural characterization of kerogens to granulitefacies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78(5-6): 533-577.

     

    Yang C N and Wang Y. 1985. Petrotectonic study on the Yuli belt of the Tananao Schist in the Juisui area, eastern Taiwan. Acta Geologica Taiwanica, 23: 153-180.

     

    Yen T P. 1963. The metamorphic belts within the Tananao schist terrane of Taiwan. Proceedings of the Geological Society of China, 6: 72-74.

     

    Yu N T, Teng L S, Chen W S et al. 2013. Early post-rift sequence stratigraphy of a Mid-Tertiary rift basin in Taiwan: Insights into a siliciclastic fill-up wedge. Sedimentary Geology, 286-287: 39-57. DOI:10.1016/j.sedgeo.2012.12.009.

     

    Yui T F, Huang E and Xu J. 1996. Raman spectrum of carbonaceous material: A possible metamorphic grade indicator for low-grade metamorphic rocks. Journal of Metamorphic Geology, 14 (2) : 115-124. DOI: 10.1046/j.1525-1314.1996.05792.x.

     

    Yui T F, Okamoto K, Usuki T et al. 2009. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China: Evidence from zircon SHRIMP dating. International Geology Review, 51(4): 304-328. DOI:10.1080/00206810802636369.

     

    Yui T F, Maki K, Lan C Y et al. 2012. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics. Tectonophysics, 541-543: 31-42. DOI:10.1016/j.tecto.2012.03.013.

     

    Zhang Y Q, Tsai C T, Froitzheim N et al. 2020. The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates. Terrestrial Atmospheric and Oceanic Sciences, 31: 415-435. DOI:10.3319/TAO.2020.06.28.01.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  2297
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2022-10-01
修回日期:  2022-11-12
刊出日期:  2023-01-01

目录