地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  2005, Vol. Issue (1): 16-31    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
松辽盆地构造演化及成盆动力学探讨
胡望水1, 吕炳全2, 张文军1, 毛治国1, 冷军3, 官大勇1
1. 长江大学地球科学学院, 湖北, 荆州, 434023;
2. 同济大学海洋地质与地球物理系, 上海, 200092;
3. 中国石油化工集团公司江汉油田分公司勘探开发研究院, 湖北, 潜江, 434124
AN APPROACH TO TECTONIC EVOLUTION AND DYNAMICS OF THE SONGLIAO BASIN
Hu Wangshui1, L? Bingquan2, Zhang Wenjun1, Mao Zhiguo1, Leng Jun3, Guan Dayong1
1. Department of Geoscience, Changjiang University, Jingzhou, Hubei 434023;
2. Department of Marine Geology and Geophysics, Tongji University, Shanghai 200092;
3. Jianghan Oilfield Branch Corp., China Petroleum & Chemical Corp., Qianjiang, Hubei 434124
 全文: PDF (6464 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 松辽盆地晚侏罗世以来的构造演化经历了10个阶段:缓慢裂陷和快速坳陷—加速裂陷和快速坳陷—减速裂陷和慢速坳陷—慢速裂陷和快速坳陷—加速裂陷和加速坳陷—减速裂陷和减速坳陷—裂陷、坳陷终止和缓慢反转—快速反转和快速差异坳陷—慢速反转和慢速差异坳陷—反转停止和坳陷终止。构造发育演化的结果形成了“下断中坳上隆顶平”的盆地结构。“中坳”部分沉积的可容纳空间,54%来源于盆地基底的长期伸展坳陷;“上隆”部分沉积的可容纳空间,31%来源于盆地基底的受压坳陷。构造作用的转换起因于东部区域应力场的转变。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡望水
吕炳全
张文军
毛治国
冷军
官大勇
关键词生长构造演化   盆地动力学   裂陷作用   伸展型坳陷作用   反转型差异坳陷作用   松辽盆地     
Abstract: In the Songliao Basin, the extensional depression occurred from Late Jurassic, experienced a long process of strong—weak—stronger—strongest—weak—stop evolution, with the stronger extension in phase of the Shahezi Formation(J3sh)depositing, the strongest extension in period of the Quantou(K1q)and Qingshankou(K1qn)Formations depositing, and the extension stopped after the Nenjiang Formation(K1n)depositing. With the rifting and extensional depression stopped, the inversion occurred, and the differentiated depression experienced a long course of weak—strong—weak—stop evolution, with the strongest compression in period of the Sifangtai(K2s)and Mingshui(K2m)Formations depositing. The post-inversion tectonic strata were depressed by the differentiated rising in Pleistocene and Holocene. The growth-structure trellis of the basin consisted of four styles: 1)normal growth fault and its extensional structural combination, 2)growth syncline, growth anticline and T2 normal growth fault, 3)positive inversion structure and growth structure, and 4)post-inversion growth syncline. The Songliao Basin could be divided into six units: the Southwest Rise, the Southeast Rise, the Northeast Rise, the North Plunge, the West Slope and the Central Depression. Based on the distribution and deformation of the inversion structures in the Songliao Basin, four zones of inversion structures were recognized, namely, the Deshu-Changchunling, the Wangkui- Renminzhen, the Daqing-Gudian and the Lindian-Honggang inversion structures. The extent of the inversion structures decreased from the east to the west. The basin evolution experencied 10 phases: initial rifting—fast depression, accelerated rifting—fast depression, deceleration rifting—slow depression, slow rifting—fast depression, accelerated rifting—accelerated depression, deceleration rifting—deceleration depression, rifting-depression termination—slow inversion, fast inversion—fast difference depression, slow inversion—slow differentiated depression, inversion—depression termination. The tectonic development resulted in the constitutions of the Late Jurassic extensional growth structure, the K1d~K1y growth structure, the K1n inversion structure and K2~Kz post-inversion structure. 46% of the depositing accommodation space of the K1d~K1y came from sediment compression, and other 54% from the long-term depression of the basin basement; 69% the depositing accommodation space of the K1n from sediment compression, and other 31% from the compression depression of the basin basement. The inversion structure resulted from the change of regional stress field in east China.
Key wordsGrowth-structure and Evolution   Basin dynamics   Rifting   Extensional depression   Differentiated depression of inversion-type   The Songliao Basin   
收稿日期: 2003-02-26;
基金资助:国家自然科学基金(批准号:49773198);中国石油天然气集团公司“九五”科技工程项目基金(编号:97020605);湖北省自然科学基金(编号:99J111)联合资助
引用本文:   
胡望水,吕炳全,张文军等. 2005, 松辽盆地构造演化及成盆动力学探讨. 地质科学, (1): 16-31.
Hu Wangshui,L? Bingquan,Zhang Wenjun et al. AN APPROACH TO TECTONIC EVOLUTION AND DYNAMICS OF THE SONGLIAO BASIN[J]. Chinese Journal of Geology, 2005, (1): 16-31.
 
没有本文参考文献
[1] 单芝波. 松辽盆地钱家店地区姚家组赋矿砂岩的组成、地球化学特征及其构造背景[J]. 地质科学, 2019, 54(2): 472-490.
[2] 何登发. 沉积盆地动力学的研究现状、问题与展望[J]. 地质科学, 2016, 51(2): 309-328.
[3] 肖丽华, 施立冬, 王建伟, 孟元林, 田伟志, 潘雪梅, 刘文慧, 胡安文, 李吉君. 火山岩储层质量预测方法探讨——以松辽盆地徐家围子断陷为例[J]. 地质科学, 2014, 49(4): 1287-1301.
[4] 邵红梅, 罗静兰, 杨艳芳. 松辽盆地营城组火山岩储层成因及储集性能演化过程[J]. 地质科学, 2013, 48(4): 1187-1203.
[5] 宋立军, 刘池洋, 郭召杰, 赵春满, 徐宏节, 韩淑霞, 曲少东, 李莉. 桑树台断裂构造带结构构造特征及其形成演化[J]. 地质科学, 2013, 48(3): 665-676.
[6] 谢昭涵, 付晓飞. 松辽盆地“T2”断裂密集带成因机制及控藏机理——以三肇凹陷为例[J]. 地质科学, 2013, 48(3): 891-907.
[7] 张学娟, 张雷, 杨倩, 卢双舫, 杨志如. 松辽盆地北部古龙地区登娄库组沉积与构造演化耦合关系研究[J]. 地质科学, 2012, 47(4): 1162-1175.
[8] 李德勇, 张金亮, 于孝玉, 张辉, 李京涛. 松辽盆地南部海坨子地区超低渗透储层特征与形成因素[J]. 地质科学, 2012, (2): 454-469.
[9] 张顺, 付秀丽, 张晨晨. 松辽盆地大庆长垣地区嫩江组二段滑塌扇的发现及其石油地质意义[J]. 地质科学, 2012, 47(1): 129-138.
[10] 刘滢, 吴朝东, 张顺. 松辽盆地北部上白垩统地层颜色变化及其沉积环境指示意义[J]. 地质科学, 2012, 47(1): 139-153.
[11] 孟元林1 王维安1 高煜婷1 肖丽华1 修洪文2 姜文亚3 李亚光2 王又春1 魏巍1. 松辽盆地北部泉三、四段储层物性影响因素分析[J]. 地质科学, 2011, 46(04): 1028-1041.
[12] 孟凡超 刘嘉麒. 松辽盆地晚中生代火山活动与天然气成藏[J]. 地质科学, 2010, 45(03): 807-821.
[13] 徐岩1,2 陈汉林2 章凤奇1,2,3 董传万1,2 余星1,2 肖骏1,2 庞彦明3 舒萍3 丁日新3. 东北地区中生代岩石圈减薄时间上限的厘定: 来自松辽盆地营城组火山岩年代学约束 [J]. 地质科学, 2010, 45(01): 194-206.
[14] 黄薇, 谢豪, 董景海. 徐家围子断陷气藏封盖保存条件及与储量丰度关系[J]. 地质科学, 2009, 44(2): 365-373.
[15] 林铁锋, 黄世伟, 王占国, 孙海雷, 吴海波, 王雅峰. 松辽盆地北部青山口组四级层序划分及界面特征[J]. 地质科学, 2009, 44(2): 374-384.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115
京ICP备05029136号-10