地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  2008, Vol. Issue (2): 251-281    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
鄂尔多斯西缘北段大型陆缘逆冲推覆体系
张家声1, 何自新2, 费安琪3, 李天斌4, 黄雄南1
1. 中国地震局地质研究所, 北京, 100029;
2. 中国石油天然气股份有限公司长庆油田分公司, 西安, 710021;
3. 中国石油天然气股份有限公司勘探与生产分公司, 北京, 100011;
4. 宁夏回族自治区地质调查院, 银川, 750021
Epicontinental mega thrust and nappe system at north segment of the western rim of the Ordos Block
Zhang Jiasheng1, He Zixin2, Fei Anqi3, Li Tianbin4, Huang Xiongnan1
1. Institute of Geology, China Earthquake Administration, Beijing 100029;
2. Changqing Oilfield Branch Company, China National Petroleum Corp., Xi’an 710021;
3. Exploration and Production Branch Company, China National Petroleum Corp., Beijing 100011;
4. Geological Survey of Ningxia Hui Autonomous Region, Yinchuan 750021
 全文: PDF (9900 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 鄂尔多斯西缘北段是一个自中生代末以来形成的、结晶基底和早古生代大陆边缘沉积盖层同时卷入的巨型陆缘逆冲推覆构造体系。根据区域地层发育、变形岩石属性、冲断层几何学以及它们与联冲断层的关系,大体上可以分为不同形成阶段的3个冲断层构造组合,包括9个次级构造单元(B1—B7,BN,BS)。受冲断层运动自西向东的一致推进,整体呈现一个局部被近东西走向联冲断层切错、向东凸出的弧形:前端为陆缘褶皱冲断带;中部表现为一系列"原地"或"异地"推覆体和冲断席,发育低角度滑脱层和双冲构造;后部又被最晚期的冲断体叠置。侏罗-白垩纪为逆冲推覆构造的主要发展阶段,经历了3期主要的冲断层作用。第Ⅰ期发生在侏罗纪末,沿阿拉善—华北两类不同性质结晶基底之间的主滑脱面发生大规模冲断层作用,形成桌子山—岗德尔山褶皱冲断带。第Ⅱ期冲断层作用的持续位移,形成了具有上、下两个构造层的石嘴山—尖山大型异地推覆体,主滑脱面为石炭纪煤系地层,其中发育典型的双冲构造。新生代(距今65Ma)以来,印度—欧亚板块挤压碰撞和青藏高原早期向北推挤,加剧了鄂尔多斯西缘逆冲推覆构造的进一步发育,第Ⅲ期冲断层作用在东部陆缘褶皱冲断带形成了苏海图反冲构造的同时,在西部将异地推覆体下部的奥陶系再次推至地表。第Ⅰ期和第Ⅱ期冲断层作用累计位移幅度可能达到60~80km,第Ⅲ期冲断层作用的位移幅度为8km。相邻冲断席之间位移矢量的差异,通过近东西走向的联冲断层得到了调整。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张家声
何自新
费安琪
李天斌
黄雄南
关键词逆冲推覆   不整合   双冲构造   联冲断层   鄂尔多斯西缘     
Abstract: A mega thrust-nappe system which has formed since Late Mesozoic are preserved at north segment of the western rim of the Ordos Block, in which both crystalline basement rocks and Early Paleozoic epicontinental sediments were involved. Three tectonic domains, including nine sub-tectonic elements(B1-B7, BN and BS), formed in different stage of the thrust-nappe developing were subdivided according to their stratigraphic records, deformation properties of involved rocks, geometry of the thrusts, and relationship with alternation link thrust. The system showed an overall arc-shaped structure forward eastwards,locally sheared by east-west trending link thrusts, resulting from an eastwards promoting of the consistent thrust movement: a fold-thrust zone in the front, followed by a series of autochthonous or heterochthonous nappes and thrust sheets, in which low-angle detachment zones and duplexes were developed, and finally overlapped at the back of the system by latest thrust sheet. The mega thrust-nappe system was mainly developing during Jurassic-Cretaceous and underwent at least three major thrusting events. The first thrusting event was approximately occurred at the end of Jurassic, during which a principal detachment probably formed along the boundary between two different basement of the Alxa Terrain in the west and the North China Terrain in the east, that resulted in a fold-thrust zone of Zhuozishan-Gangdeershan forming. A large scale heterochthonous nappe of Shizuishan-Jianshan with upper and lower tectonic layers was formed during the second thrusting event. These tectonic layers separated by a low-angle detachment developed in Carboniferous system with typical duplexes. Since Cenozoic(ca.65 Ma), the mega thrust-nappe system went a step further along with collision between the Indian and China plates, as a result of a northwards pushing of the Qinghai-Tibet Plateau. A third thrusting event pushed the Ordovician strata, which was previously covered by heterochthonous nappe, up to surface again at western side of the system and, at the same time, the Suhaitu back-thrusts were created in the Zhuozishan-Gangdeershan fold-thrust zone. Distance of the thrust sheets and nappes movement might be up to 60 to 80 km during the first and second thrust events, and up to 8 km during the third event. Difference of thrusting movement vectors at vicinal sheets was adjusted by series nearly east-west trending link thrusts.
Key wordsThrust and nappe structures   Unconformity   Duplexes   Link thrust   Western rim of Ordos   
收稿日期: 2007-02-15;
基金资助:中国石油天然气股份有限公司长庆油田分公司勘探工程技术攻关项目;国家自然科学基金项目(批准号:40472114);科技部国际科技合作重点项目(编号:2001CB711002)资助的研究成果
引用本文:   
张家声,何自新,费安琪等. 2008, 鄂尔多斯西缘北段大型陆缘逆冲推覆体系. 地质科学, (2): 251-281.
Zhang Jiasheng,He Zixin,Fei Anqi et al. Epicontinental mega thrust and nappe system at north segment of the western rim of the Ordos Block[J]. Chinese Journal of Geology, 2008, (2): 251-281.
 
没有本文参考文献
[1] 陈秀其 周涛发 侯明金 李明龙. 皖南地区加里东运动构造特征[J]. 地质科学, 2019, 54(1): 62-78.
[2] 熊 伟. 埕岛—桩海地区潜山滑脱构造与油气聚集[J]. 地质科学, 2019, 54(1): 79-94.
[3] 包洪平 邵东波 武春英 李维 蔡郑红 宋微. 鄂尔多斯西缘冲断带南段构造特征及其对古生界天然气成藏演化的影响[J]. 地质科学, 2018, 53(2): 434-457.
[4] 马德波 陈利新 陶小晚 袁敬一 周春蕾 李婷婷. 塔里木盆地哈拉哈塘地区构造演化及其油气地质意义[J]. 地质科学, 2018, 53(1): 87-104.
[5] 马德龙 潘建国 张虎权 王宏斌 王彦君 魏彩茹 陈雪珍. 准噶尔盆地南缘小渠子背斜T/P 同构造不整合几何学、运动学特征及地质意义[J]. 地质科学, 2018, 53(1): 146-154.
[6] 李正友 薛灵文 王世锋 王 刚 彭成名 侯 芸 段 磊 . 南羌塘盆地中-新生代逆冲推覆构造样式及构造应力场特征[J]. 地质科学, 2017, 52(3): 783-800.
[7] 单帅强, 何登发, 张煜颖. 渤海湾盆地西部保定凹陷构造—地层层序与盆地演化[J]. 地质科学, 2016, 51(2): 402-414.
[8] 李京昌, 张智礼, 宋海明, 蔡习尧, 马庆佑, 郭欣. 塔中隆起中-上奥陶统之间的不整合成因机制[J]. 地质科学, 2016, 51(2): 510-520.
[9] 杨耀, 刘焰, 王显峰, 苑婷媛. 南羌塘盆地构造演化及其油气形成与构造保存条件研究[J]. 地质科学, 2016, 51(1): 128-148.
[10] 郭进京, 韩文峰, 赵海涛, 李雪峰, 张帆宇. 西秦岭晚白垩世原型盆地——新生代青藏高原隆起的背景[J]. 地质科学, 2015, 50(2): 364-376.
[11] 曹代勇, 徐浩, 刘亢, 魏迎春, 占文锋, 王信国. 鄂尔多斯盆地西缘煤田构造演化及其控制因素[J]. 地质科学, 2015, 50(2): 410-427.
[12] 宋荣彩, 肖锦泉, 李猛, 谭泽金, 王洋, 董树义, 刘栋. 塔中地区志留系柯坪塔格组内不整合的微观证据[J]. 地质科学, 2015, 50(1): 303-314.
[13] 文竹, 何登发, 樊春, 李英强, 孙衍鹏, 贺鸿冰. 米苍山东河地质大剖面的构造几何学与运动学及其对上扬子北部陆内俯冲机制的约束[J]. 地质科学, 2013, 48(1): 93-108.
[14] 陈平, 陆永潮, 杜学斌, 林卫兵. 准噶尔盆地腹部区中生界不整合面类型及纵向结构[J]. 地质科学, 2012, 47(1): 92-101.
[15] 宋到福1 何登发1 李涤1 王书荣2. 准噶尔盆地西北缘布龙果尔凹陷构造变形特征解析[J]. 地质科学, 2011, 46(03): 679-695.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115