地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  1977, Vol. 12 Issue (3): 219-235    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
生物化石钙质结构的分类与演化(连载)
戴永定, 蒋协光, 赵生才, 杨红, 李菊英, 侯奎
CLASSIFICATION AND EVOLUTION OF CALCAREOUS SKELETAL TEXTURES OF FOSSIL ORGANISMS
Dai Yongding, Jiang Xieguang, Zhao Shengbai, Yang Hong, Li Juying, Hou Kui
 全文: PDF (1518 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 

绝大部份无脊椎动物和藻类化石由碳酸钙组成。研究生物化石钙质结构是为了对化石进行正确鉴定和合理分类,探索古生物间相互的演化关系。沉积岩,特别是碳酸岩中含有大量的生物组份,研究其结构是确定岩石薄片内生物化石及其碎片类型的必要手段,在研究岩石、岩相和古生态时必需广泛采用。

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:   
Abstract

Based on a multitude of both domestic and foreign literatures as well as many thin sections of the calcareous skeletal textures of fossil and recent organisms, a new classification of the calcareous skeletal textures of fossil organisms is proposed in this paper. According to their geometrical shapes and optical properties biocrystals can be divided into points, lines and plans whereas the calcareous skeletal textures are divisible into three groups: granular, fibrous and foliated. The granular texture may be further subdivided into five types: agglutinated, crypto-granular, micro-granular, crysto-granular and single crystal; the fibrous texture subdivided into five types: lamellb-cnormalo-fibrous, prismato (curved)-lamello-fibrous, prismato-fibrous, sphero-fibrous and hyalo-fibrous; the foliated texture subdivided into five types: parallelo, clino, crossed-lamellar, complex crossed-lamellar and nacreous. Although the prismatic texture may have derived by retrogressive evolution from foliated texture, for the time being it is referred here to the fibrous texture. Besides, tables showing the distribution of mineral components and calcareous textures for various animal phyla are given.While coordinating and synthesizing the data available we have found that both the mineral components and textures of calcareous fossil skeletons show an evolutional sequence. The sequence for mineral components is: silica and dolomite → phosphate →organic matter→calcite-magnesian calcite and aragonite, a sequence consistent in general with that observed in marine chemical sediments. The evolutional sequence of texture of calcareous skeletons is: granular → fibrous foliated. The granular texture occurs chiefly in algae, protozoans, sponges, archaeocyathids and echinodermates; the fibrous texture in coelen’terates and arthropods; the foliated texture in bryozoans, brachiopods, mollusks and some annelids. Such textures as single crystal, hyalo-f ibrous and nacreous represent respectively the most advanced types within echinodermates, arthropods and cephalopods. This evolution of calcareous skeletal texture of fossil organisms not only existed in phylogenesis but also within every phylum; besides, ontogeny recapitulates such an evolution as reflected in the sequence of shell layers.Except a small number of cases involving physiological process and agglutination, calcareous skeletons formed through secretion, which may be subdivided into four types: accretion, addition, molting and modification. In general, algae and protozoans secrete by protoplasm calcareous matter a a granular texture. Coelenterates secrete skeleton of the fibrous texture by ectoderm. Bryogoans, brachiopods and mollusks secrete skeleton by pallial ectoderm mostly showing various types of foliated texture. Arthropods secrete skeleton of hyalo-fibrou texture by basal pallium, which was de- rived from ectoderm. Echinodermates secrete skeleton of single crystal texture by mesoderm differentiated from endoderm. Sponges and archaeocyathids being pleurozoa have a reverse diploderm. Although secreting skeleton by ectoderm they possess a granular texture. The teitural types of spicules are similar to those of skeleton.It may be concluded from the above discussion that textures of calcareous skeletons of fossil organisms were formed under the control of evolution in the texture and the secretory fissue of embryonic layers.Secretory tissue employs the superficial organic matrix to control the precipitation of calcium carbonate. The texture of biocrystal involving granularity, shape and fabric arrangement is controlled by the molecular pattern of organic matrix which varies with secretory tissue of different organisms, hence producing different calcare-ous textures. During ontogeny the secreted calcareous texture changes with the variation of organic matrix, thus a sequence of shell layers was formed.

Key words:   
引用本文:   
. 1977, 生物化石钙质结构的分类与演化(连载). 地质科学, 12(3): 219-235.
. CLASSIFICATION AND EVOLUTION OF CALCAREOUS SKELETAL TEXTURES OF FOSSIL ORGANISMS[J]. Chinese Journal of Geology, 1977, 12(3): 219-235.
 
没有本文参考文献
[1] . 封面-目录-封底[J]. 地质科学, 2019, 54(4): 0-0.
[2] 郭旭东 丁林 蔡福龙 王厚起 岳雅慧. 雅鲁藏布江缝合带西段仲巴地区俯冲—增生过程[J]. 地质科学, 2019, 54(4): 1031-1047.
[3] 汤文坤 李正友 段磊 王世锋. 青藏高原南羌塘盆地多玛地区晚新生代伸展构造特征[J]. 地质科学, 2019, 54(4): 1048-1061.
[4] 央金拉姆 季建清 徐芹芹 王昌盛 苏君 涂继耀 彭玉恒 邵媛燕 钟大赉 米玛次仁. 藏东南帕隆藏布现今河流地貌特征及其晚第四纪演化[J]. 地质科学, 2019, 54(4): 1062-1084.
[5] 李洪辉 董洪奎 杜德道 张立平 王祥 陈秀艳 李曰俊. 塔里木盆地麦盖提斜坡及周缘断裂及其对油气成藏的控制作用[J]. 地质科学, 2019, 54(4): 1085-1099.
[6] 吴晓智 周刚 何登发 王小娟 郭秋麟 郑民. 四川盆地川东地区高陡构造形成机制与天然气聚集[J]. 地质科学, 2019, 54(4): 1100-1113.
[7] 李大军 陈洪德 侯明才 徐胜林 庞崇友 郭海洋. 四川盆地中二叠世栖霞期—茅口期岩相古地理特征及其地球动力学机制探讨[J]. 地质科学, 2019, 54(4): 1114-1134.
[8] 叶涛 韦阿娟 曾金昌 邓辉 彭靖淞 鲁凤婷. 渤海湾盆地中生代构造差异演化与潜山油气差异富集[J]. 地质科学, 2019, 54(4): 1135-1154.
[9] 许福美 姜琳 鲍道亮 刘明松 邱占林. 龙永煤田童子岩组层序地层格架与聚煤规律研究[J]. 地质科学, 2019, 54(4): 1155-1166.
[10] 林士扬 季建清 苏君. 全球地震震源深度统计分析与地震层分布[J]. 地质科学, 2019, 54(4): 1167-1184.
[11] 李振伟 宋传中 李加好 王阳阳 袁芳 王微 陈守文. 郯庐断裂带桐城段构造变形解析[J]. 地质科学, 2019, 54(4): 1185-1209.
[12] 何心月 李理. 复杂伸展盆地区平衡剖面的恢复方法[J]. 地质科学, 2019, 54(4): 1210-1222.
[13] 余烨 张昌民 李少华 杜家元 黄俨然 王莉. 低可容纳空间三角洲层序地层及其控砂模式[J]. 地质科学, 2019, 54(4): 1223-1236.
[14] 刘富军 杨庆坤 郭福生 孙传敏 陈留勤 华琛. 粤北丹霞盆地上白垩统丹霞组锦石岩段顶部泥岩岩石地球化学特征及其地质意义[J]. 地质科学, 2019, 54(4): 1237-1251.
[15] 宋宏 郭雪莲 贺陆胜. 晚泥盆世古土壤元素地球化学特征及其古气候意义[J]. 地质科学, 2019, 54(4): 1252-1264.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115