地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  2018, Vol. 53 Issue (4): 1215-1227    DOI: 10.12017/dzkx.2018.069
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
镁铁质—超镁铁质岩浆岩中单斜辉石的智能分析研究
杜雪亮1    李玉琼1    金维浚2    杜    君1    张    旗2    王金荣1    马    蓁1
  1. 兰州大学地质科学与矿产资源学院,甘肃省西部矿产资源重点实验室  兰州    730000
  2. 中国科学院地质与地球物理研究所  北京    100029
Intelligent analysis of clinopyroxene in mafic-ultramafic magmatite
Du Xueliang1    Li Yuqiong1    Jin Weijun2    Du Jun1    Zhang Qi2    Wang Jinrong1    Ma Zhen1
  1. Key Laboratory of Mineral Resources in Western China(Gansu Province), School of Earth Sciences, Lanzhou University,Lanzhou  730000
  2. Institute of Geology and Geophysics, China Academy of Sciences, Beijing  100029
 全文: PDF (2046 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 

区分不同构造环境中岩浆作用是认识地幔中岩浆形成过程的基本手段。目前较为成熟的是利用全岩去区分判别,而利用造岩矿物去判别构造环境、演绎岩浆演化的研究还不够深入。本文运用机器学习的方法,以全球新生代大洋中脊、洋岛以及岛弧构造背景中的镁铁质—超镁铁质岩浆岩中单斜辉石的地球化学数据为研究对象,试图区分这3 种不同构造环境的单斜辉石。通过机器学习方法中K-邻近(K-Nearest Neighbor,KNN)和随机森林(Random Forest,RF)的计算和比较,认为RF 是一种有效的地球化学区分方法,它的结果不仅可用来判别构造环境,同时还能够提取特征元素。同时我们发现,在镁铁质—超镁铁质岩浆岩单斜辉石构造环境判别图解中,Rb、La、Ba、Cr、Sr、Yb、V、Ti、Nd、Eu、Gd等微量元素具有较高的贡献率,而主量元素贡献率较低。在此基础上,我们结合前人的对单斜辉石的构造环境判别图的研究成果,提出几个判别效果较好的判别图解。但是整个研究由于缺少进一步可视化的成果,限制了机器学习方法的推广,这也是今后需要进一步研究的课题。

 

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜雪亮 李玉琼 金维浚 杜 君 张 旗 王金荣 马 蓁
关键词镁铁质—超镁铁质岩浆岩   单斜辉石   K-邻近   随机森林   特征元素     
Abstract

Differentiating the magmatism in different tectonic environments is the basic means to understand the magma formation process in the mantle. At present, it is more mature to use whole rocks to distinguish and discriminate. While, the use of rock-forming minerals to discriminate the tectonic environment and deduce magmatic evolution is still insufficient. In this paper, we use the geochemical data of clinopyroxene in the mafic-ultramafic magmatite,which is in oceanic mid-ocean ridge, oceanic island, and island-arc tectonic setting in the global Cenozoic as research object, trying to distinguish the three kinds of clinopyroxene in different tectonic environments with machine learning methods. By the calculation and comparison of K-Nearest Neighbor(KNN)and Random Forest(RF)in the machine learning method, it is considered that RF is an effective geochemical discrimination method, and its results can be used not only to discriminate tectonic environment, but also to extract characteristic elements. At the same time, we found that the trace elements such as Rb, La, Ba, Cr, Sr, Yb, V, Ti, Nd, Eu, Gd have a higher contribution rate in the discrimination of clinopyroxene from mafic-ultramafic magmatite, and the contribution rate of the major elements is low. Based on this, we propose several discriminative diagrams with better discriminant effect combining with previous research results. However, the lack of visualization results in the whole research limits the popularization of machine learning method. This is also a subject that we need to study further in the future.

 

Key wordsMafic-ultramafic magmatite   Clinopyroxene   KNN, RF   Characteristic elements   
收稿日期: 2018-03-10;
基金资助:

中央高校基本科研业务费专项资金项目(编号:Lzu-Jbky-2016-197)资助。

通讯作者: 王金荣,男,1958年6月生,教授,构造地质学专业。     E-mail: jrwang@lzu.edu.cn
作者简介: 杜雪亮,男,1993年2月生,硕士研究生,矿物学、岩石学、矿床学专业。E-mail:duxl16@lzu.edu.cn
引用本文:   
杜雪亮 李玉琼 金维浚 杜 君 张 旗 王金荣 马 蓁. 2018, 镁铁质—超镁铁质岩浆岩中单斜辉石的智能分析研究. 地质科学, 53(4): 1215-1227.
$author.xingMing_EN. Intelligent analysis of clinopyroxene in mafic-ultramafic magmatite[J]. Chinese Journal of Geology, 2018, 53(4): 1215-1227.
 
没有本文参考文献
[1] 洪 瑾 甘成势 刘 洁. 基于机器学习的岩石微量元素与主量元素关系初探:以洋岛玄武岩中锆元素为例[J]. 地质科学, 2018, 53(4): 1285-1299.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115