地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  2016, Vol. 51 Issue (3): 850-871    DOI: 10.12017/dzkx.2016.034
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
诸广山岩体黄峰岭地区产铀花岗岩的岩浆液态不混溶成因
邹明亮1, 方适宜1, 徐 浩2, 黄宏业1, 刘鑫扬3, 向庭富1
1. 核工业230研究所 长沙 410007;
2. 核工业北京地质研究院 北京 100029;
3. 中国核工业地质局 北京 100013
Liquid immiscibility for U—bearing granites of Huangfengling area,in the middle of Zhuguangshan pluton, southern China
Zou Mingliang1, Fang Shiyi1, Xu Hao2, Huang Hongye1, Liu Xinyang3, Xiang Tingfu1
1. Changsha Uranium Geology Research Institute,CNNC,Changsha 410011;
2. Beijing Research Institute of Uranium Geology,CNNC,Beijing 100029;
3. China Nuclear Geology,Beijing 100013
 全文: PDF (6756 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 对华南诸广山岩体黄峰岭地区花岗岩开展了锆石U-Pb年代学、矿物学及岩石地球化学研究,提出产铀岩的成因与富氟花岗岩浆液态不混溶作用有关。将黄峰岭地区花岗岩划分为5类, LA-ICP-MS锆石U-Pb定年结果表明,“红化”似伟晶花岗岩成岩年龄为225.4±1.7Ma,与之共生的“红化”细粒黑云母花岗岩成岩年龄为222.9±2.7Ma和226.9±2.7Ma,表明两者形成时代相近且晚于印支期花岗岩岩基成岩年龄(235.4±1.1Ma)。通过镜下鉴定、长石单矿物X射线粉晶衍射以及热力学计算, 认为黄峰岭地区钾、 钠长石主要形成于成岩期,隶属于最大微斜长石及低钠长石系列,与晚期钠交代形成的长石存在差异。元素地球化学分析表明,不同类型花岗岩呈现出Si-Al、K-Na分离,Nb-Ta、Zr-Hf等元素对分异现象,稀土元素配分模式表现出突变性、共轭性,ΣREE-(La/Yb)N和La-La/Sm演化方向呈分离特征。区内晚期Li-F花岗斑岩脉及多处萤石矿床(点)证实大量氟元素的存在。上述特征综合分析表明:黄峰岭地区产铀花岗岩成岩期存在富氟花岗岩浆液态不混溶作用,且处于其中的中—低阶段,形成的富硅酸盐和贫硅酸盐系统导致了产铀的“红化”似伟晶花岗岩与细粒黑云母花岗岩的空间共生、地球化学共轭等特征,且铀主要富集于岩浆液态不混溶体系形成的花岗岩中。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹明亮
方适宜
徐 浩
黄宏业
刘鑫扬
向庭富
关键词诸广山岩体   产铀花岗岩   岩浆液态不混溶   成矿作用     
AbstractHuangfengling area is located in middle of Zhuguangshan pluton, Nanling large igneous province in southern China. Researches on the LA-ICP-MS zircon U-Pb geochronology, mineralogy and petrogeochemistry of granites in this area have been conducted, proposing that the origin of uranium—bearing granites were related with the liquid immiscibility of fluorine—rich magma. Based on the divide of granites in Huangfengling area, LA-ICP-MS zircon U-Pb dating results showed that age of reddening pegmatoid granite was 225.4±1.7Ma, while the reddening finegrained biotite granite associately were 222.9±2.7Ma and 226.9±2.7Ma respectively, indicating that granites of both types were formed synchronization and later than the Indosinian granite(235.4+1.1Ma). The results of the microscopic identification,X—ray powder diffraction and thermodynamic calculation of feldspar showed that the potassium and sodium feldspar which belonging to the maximum microcline and low albite series, have been formed in the diagenetic stage mainly, which were different with the terminal heat—treated albite. Analysis of element geochemical showed that Si-Al and K-Na separation, Nb-Ta, Zr-Hf and other elements couple differentiation, the rare earth elements distribution pattern were mutagenicity and conjugation and ΣREE-(La/Yb)N with La-La/Sm owned the separation characteristics of evolution direction in different types of granites. Moreover, the presence of late stage Li-F granite porphyry vein associated with many fluorite deposits(or prospecting points)around Huangfengling area implied that there have been massive fluorine element. Comprehensive analysis of these characteristics indicates that, the origin of uranium—bearing granites was related to the fluorine—rich liquid immiscibility in diagenetic stage of Huangfengling area, and belonged to the medium—low stage in this system, which have formed the rich and poor silicate systems, resulted the phenomenon of reddening pegmatite granite associated with fine granite uraniumbearing in space and geochemical conjugation. The enrichment of uranium in granites which formed from liquid immiscibility have laid the foundation for mineralization later.
Key words Zhuguangshan pluton   U—bearing granites   Magma liquid immiscibility   Metallogenesis   
收稿日期: 2015-04-29;
基金资助:

中国核工业地质局项目(编号: 201456, 2014105)资助

作者简介: 邹明亮,男,1983年8月生,硕士研究生,地质学专业。Email:zoumingliang2001@163.com
引用本文:   
邹明亮,方适宜,徐 浩等. 2016, 诸广山岩体黄峰岭地区产铀花岗岩的岩浆液态不混溶成因. 地质科学, 51(3): 850-871.
Zou Mingliang,Fang Shiyi,Xu Hao et al. Liquid immiscibility for U—bearing granites of Huangfengling area,in the middle of Zhuguangshan pluton, southern China [J]. Chinese Journal of Geology, 2016, 51(3): 850-871.
 
没有本文参考文献
[1] 赵娜 王忠梅 王浩 韩春明. 山西五台金岗库矿床成矿作用研究[J]. 地质科学, 2019, 54(2): 608-641.
[2] 杨俊杰, 柴凤梅, 杨富全, 张志欣. 新疆阿尔泰巴特巴克布拉克铁矿床成矿作用研究[J]. 地质科学, 2015, 50(3): 879-897.
[3] 张旗, 金惟浚, 李承东, 焦守涛. 岩浆热场与热液多金属成矿作用[J]. 地质科学, 2015, 50(1): 1-29.
[4] 潘成泽1 李月臣1 颜启明1 敖松坚2. 新疆东天山晚古生代地壳增生和成矿作用[J]. 地质科学, 2010, 45(01): 30-040.
[5] 倪守斌, 满发胜, 陈江峰, 孙盼盼. 新疆阿拉套山成矿作用:区域背景、矿源和模式[J]. 地质科学, 2009, 44(1): 128-136.
[6] 孙忠实, 邓军, 孙黎, 白岩, 范思琦, 王建平, 杨立强, 王庆飞. 大陆冲磁效应对成矿作用的控制[J]. 地质科学, 2007, (4): 812-824.
[7] 张复新, 杜孝华, 王伟涛, 齐亚林. 秦岭造山带及邻区中生代地质演化与成矿作用响应[J]. 地质科学, 2004, (4): 486-495.
[8] 申萍, 沈远超, 李光明, 刘铁兵, 曾庆栋, 李厚民. 胶东金牛山金矿床构造—流体—成矿作用体系研究[J]. 地质科学, 2004, (2): 272-283.
[9] 徐贵忠, 佘宏全, 周瑞, 杨振德, 王艺芬, 颜丹平, 杨忆. 莲花山地区成矿作用动力学背景的新认识[J]. 地质科学, 2001, (4): 414-423.
[10] 王元龙, 成守德. 新疆地壳演化与成矿[J]. 地质科学, 2001, (2): 129-143.
[11] 王可勇, 姚书振, 吕新彪. 川西北马脑壳金矿床构造-流体-金成矿作用系统演化模式[J]. 地质科学, 2001, (2): 164-175.
[12] 秦德先, 燕永锋, 田毓龙, 刘伟. 大红山铜矿床的地质特征及成矿作用演化[J]. 地质科学, 2000, (2): 129-139.
[13] 李华芹, 陈富文, 蔡红, 刘后群. 新疆东部马庄山金矿成矿作用同位素年代学研究[J]. 地质科学, 1999, (2): 251-256.
[14] 徐晓春, 岳书仓. 粤东锡(钨、铜)多金属矿床的成矿物质来源和成矿作用[J]. 地质科学, 1999, (1): 78-89.
[15] 陆德复. 涡旋成矿作用[J]. 地质科学, 1997, (3): 364-374.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115