地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  2016, Vol. 51 Issue (3): 655-681    DOI: 10.12017/dzkx.2016.022
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
与岩浆热场有关的“成矿组合”及其对找矿的启示
张 旗1,2,梅友松3, 王金荣4, 金维浚1, 李承东5,焦守涛1,3,陈万峰4,
1. 中国科学院地质与地球物理研究所 北京 100029;
2. 岩石圈演化国家重点实验室 北京 100029;
3. 北京矿产地质研究所 北京 100012;
4. 兰州大学地质科学与矿产资源学院 兰州 730000;
5. 中国地质调查局天津地质矿产研究所 天津 300170
Metallogenic assemblage related to magma thermal field and its inspiration for ore prospecting
Zhang Qi1,2,Mei Yousong3, Wang Jinrong4, Jin Weijun1, Li Chengdong5,Jiao Shoutao1,3,Chen Wanfeng4,
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;
2. State Key Laboratory of Lithospheric Evolution, Beijing 100029;
3. Beijing Institute of Geology and Mineral Resources, Beijing 100012;
4. School of Earth Sciences, Lanzhou University, Lanzhou 370000;
5. Tianjin Institute of Geology and Mineral Resources, China Geological Survey, Tianjin 300170
 全文: PDF (6236 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 与岩浆热场有关的成矿组合是一个新概念,是指在一个或大或小的区域内,在岩浆活动集中的时间段范围内,在岩浆热场的统一作用下所形成和影响的所有矿床,不论成因和矿种,均属于一个成矿组合。与岩浆热场有关的成矿作用主要包括下列几类: 岩浆热液矿床、岩浆热场叠加的沉积矿床、岩浆热场叠加的变质矿床、岩浆热场叠加的能源矿床(藏)以及热泉型矿床等。与岩浆热场有关的成矿组合把金属与非金属成矿作用联系起来,把无机与有机成矿联系起来,把热液与沉积成矿联系起来,把热液与变质成矿联系起来,把金属与能源(燃料)成矿联系起来。这种成矿组合的分布有两种趋势: 一是纵向上的由不同温度构成的成矿组合,如钨锡—铅锌组合、锡—铜组合等; 二是横向上的由相同温度不同矿种构成的成矿组合,如钨锡—石墨组合、金—铜—煤组合、铅—锌—煤组合、油—气—煤—铀组合等。成矿组合强调综合找矿的思路,在找矿时,除了注意主要矿产的找矿外,还应当注意其他矿产和矿种的找矿。在找金属矿床时,注意非金属矿床、沉积叠加改造矿床、变质叠加改造矿床以及能源矿床找矿的可能性。在研究高温金属矿床时,注意与高温成矿相伴的其他矿种成矿的可能性,注意低温金属矿床成矿的可能性,注意与低温成矿作用相伴的其他矿种成矿的可能性。开阔找矿的思路,就不能拘泥于本行本专业,而是围绕岩浆热场,将找所有可能出现的矿为己任。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张 旗
梅友松
王金荣
金维浚
李承东
焦守涛
陈万峰
关键词与岩浆热场有关的成矿组合   热液矿床   沉积矿床   变质矿床   能源矿床(藏)热泉矿床   找矿     
AbstractMetallogenic assemblage related to magma thermal field is a new concept related to the distribution of temperature gradient of magma thermal field. In the period of magmatic activity concentration range, all of the deposits are formed and influenced by magma thermal field, regardless of the genesis and types of ore deposits, all belong to a metallogenic assemblage. It includes magmatic hydrothermal deposit, sedimentary deposits superimposed by the magma thermal field, metamorphic deposits superimposed by the magma thermal field, energy deposits superimposed by the magma thermal field and hot spring deposits. Metallogenic assemblage related to magma thermal field links metallization with nonmetallic mineralization, organic mineralization with inorganic mineralization, hydrothermal mineralization with sedimentary mineralization, hydrothermal mineralization with metamorphic mineralization, metallization with energy metallization. There are two kinds of distribution of the metallogenic assemblage trend, one is from high to low temperatures in longitudinal sections, such as W—Sn—Pb—Zn combination, Sn—Cu combination; anther one is composed of different minerals metallogenic combination in transverse sections, such as W—Sn—graphite combination, Au—Cu—coal combination, Pb—Zn—coal combination, oil—gas—coal—U combination. Metallogenic assemblage emphasizes comprehensive prospecting. In prospecting, in addition to pay attention to the main mineral prospecting, we should also pay attention to other minerals and mineral prospecting. Looking for metal deposits, we should pay attention to the nonmetallic deposits, sedimentary superimposed deposit, metamorphic deposits as well as the possibility of energy mineral deposits. Looking for high temperature metal deposits, we should pay attention to the possibility of other minerals accompanied by high temperature mineralization, the possibility of low temperature metal deposit mineralization, the possibility of other mineral accompanied by low temperature mineralization. Around the magma thermal field, looking for all possible deposits is our own duty.

Key wordsMetallogenic assemblage related to magma thermal field   Hydrothermal deposits   Sedimentary deposits   Metamorphic deposits   Energy deposits   Hot spring deposits   Mineral deposit prospect   
收稿日期: 2014-11-02;
基金资助:

国家自然科学基金项目(编号:91014001,41272065)和中国科学院地质与地球物理研究所岩石圈演化国家重点实验室项目(编号:81300001)资助

作者简介: 张 旗,男,1937年9月生,研究员,岩石学和地球化学专业。Email:zq1937@126.com
引用本文:   
张 旗,梅友松,王金荣等. 2016, 与岩浆热场有关的“成矿组合”及其对找矿的启示
. 地质科学, 51(3): 655-681.
Zhang Qi,Mei Yousong,Wang Jinrong et al. Metallogenic assemblage related to magma thermal field and its inspiration for ore prospecting[J]. Chinese Journal of Geology, 2016, 51(3): 655-681.
 
没有本文参考文献
[1] 袁峰 李晓晖 胡训宇 李跃 贾蔡 Ord Ali 张明明 戴文强 李贺. 热液矿床成矿作用研究新途径:数值模拟[J]. 地质科学, 2019, 54(3): 678-690.
[2] 韩建军 刘会文 李加好 赵明福 李玉龙. 柴达木西北缘牛鼻子梁地区地球化学特征及找矿指导[J]. 地质科学, 2018, 53(4): 1455-1465.
[3] 张旗, 金惟浚, 李承东, 焦守涛. 岩浆热场与热液多金属成矿作用[J]. 地质科学, 2015, 50(1): 1-29.
[4] 汪青松. 蚌埠—凤阳地区构造格架与找矿方向研究[J]. 地质科学, 2014, 49(2): 405-416.
[5] 侯威, 肖勇, 陈翻身. 海南岛石碌韧性剪切带的主要特征与“北一”式铁矿的成因[J]. 地质科学, 2007, (3): 483-495.
[6] 刘亮明, 王志强, 彭省临, 杨群周, 邵拥军. 综合信息论在储量危急矿山深边部找矿中的应用——以铜陵凤凰山铜矿为例[J]. 地质科学, 2002, (4): 444-452.
[7] 陆德复. 涡旋成矿作用[J]. 地质科学, 1997, (3): 364-374.
[8] 屈奋雄, 张宝华, 刘如琦. 构造置换及其控矿规律——以吉林板石沟铁矿为例[J]. 地质科学, 1997, (1): 103-109.
[9] 李长江, 蒋叙良, 徐有浪, 麻土华. 浙江中生代热液矿床的分形研究[J]. 地质科学, 1996, (3): 264-273.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115