地质科学
     首页 | 过刊浏览 |  本刊介绍 |  编委会 |  投稿指南 |  期刊征订 |  留言板 |  批评建议 |  联系我们 |  English
地质科学  2015, Vol. 50 Issue (3): 898-910    DOI: 10.3969/j.issn.0563-5020.2015.03.015
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
钨的气态迁移与岩浆—热液成矿作用:实验研究及其成矿学意义
张生, 陈根文
中国科学院广州地球化学研究所矿物学与成矿学重点实验室 广州 510640
Gaseous transport and magmatic-hydrothermal mineralization of tungsten: Experimental study and its metallogenic implications
Zhang Sheng, Chen Genwen
Key Laboratory for Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640
 全文: PDF (719 KB)   HTML( )   输出: BibTeX | EndNote (RIS)      背景资料
摘要 低密度的水热蒸气和超临界似气流体广泛存在于中地壳至地球表面的各种地质环境中, 是成矿金属搬运和富集的重要介质。火山喷气凝结水、火山结壳和升华物、矿床的流体包裹体气相中均存在具有地质意义的W含量或含钨矿物, 表明W同样可在含水气相中溶解和迁移。本文在350 ℃~400 ℃和压力为60~200 bar的实验条件下, 测定了WO3-H2O体系中W在水蒸气和似气流体中的溶解度, 考察了水蒸气压力对W溶解度的影响。结果显示, W在水蒸气中的逸度(或含量)远高于依据无水体系中固体WO3挥发性数据计算的蒸气压力, 证明气态溶质W与溶剂水蒸气之间存在促进W溶解的水合作用。经热力学方法分析, 认为可能形成了WO3·nH2O(g)形式的水合气体物种, 其水合数n在350 ℃、370 ℃和400 ℃时分别为1.4、1.6和2.9。因此WO3·3H2O(g)或H2WO4·2H2O(g)及H6WO6(g)在温压较高的岩浆—热液或气成—热液成矿环境中(如斑岩系统)对W的气态迁移和浓集可能具有重要作用, 而在温压较低的水热蒸气条件下, W的迁移形式可能以水合数较小的WO3·H2O(g)(或H2WO4)和WO3·2H2O(g)(或H2WO4·H2O)物种为主, 其含量或比例随水蒸气的压力而改变。某些斑岩型和脉型钨(钼)矿床常存在富气体包裹体, 伴随酸性岩浆结晶出溶的以低盐度含水蒸气占优势的岩浆流体对斑岩系统中W、Mo在高温阶段的气态迁移和矿质在花岗岩体顶部和上覆岩层的聚集具有重要意义, 之后蒸气冷凝可产生高盐度的含矿卤水或与渗流地下水混合形成低—中等盐度的成矿流体, 流体的减压沸腾(相分离)和对围岩的交代蚀变导致W、Mo等金属在不同阶段和构造—岩性部位沉淀富集。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词   含水蒸气   溶解度   水合物种   气态迁移   斑岩型钨矿床     
Abstract: Low-density hydrothermal vapor and vapor-like fluid occur widely in various geological environments from middle crust to terrestrial surface, and they are important agents for the transport and enrichment of ore-forming metals. Geologically significant tungsten contents or tungsten-bearing minerals are found in fumarolic condensates, sublimates and incrustations in volcanic areas and in vapor phase of fluid inclusion in ore deposits, showing tungsten can also be dissolved and transported in aqueous vapor. The solubility of tungsten in water vapor and vapor-like fluid in the WO3-H2O system was experimentally determined at temperatures of 350 ℃~400 ℃ and pressures of 60~200 bar, and whereby the influence of water vapor pressure on the solubility was investigated. The results indicate that the fugacity or contents of tungsten in water vapor are much higher than the vapor pressure of solid WO3 calculated with the volatile data in water-free system, demonstrating hydration takes place between the gaseous solute of tungsten and the solvent of water vapor, which promotes the dissolution of tungsten in the vapor. Based on thermodynamic analysis, the solubility is attributed to the formation of hydrated gas species WO3 · nH2O(g), and the hydration numbers are 1.4 at 350 ℃, 1.6 at 370 ℃, and 2.9 at 400 ℃, respectively. Thus, WO3 · 3H2O(g)or H2WO4 · 2H2O(g) and H6WO6(g) is likely to play an important role in the gaseous transport and concentration of tungsten in the magmatic-hydrothermal or pneumatolytic-hydrothermal circumstances such as porphyry system under high temperature and pressure conditions, whereas the complexes with less hydration numbers, WO3 · H2O(g)(or H2WO4)and WO3 · 2H2O(g)(or H2WO4 · H2O), whose proportion varies with the water vapor pressure, will probably predominate in the hydrothermal vapor at lower temperatures and pressures. Vapor-rich inclusions occur commonly in some porphyry and vein-type W(-Mo) deposits, the magmatic fluid dominated by low-salinity aqueous vapor exsolved from acid magma during crystallization is mostly responsible for the gaseous transport and gathering of tungsten and molybdenum in the apical space of the granitic pluton and overlying wall rocks. Subsequently vapor can evolve into metal-bearing high-salinity liquid or brine through condensation or further produce low to moderate salinity mineralizing fluid by mixing with infiltrating groundwater. Fluid boiling or phase separation caused by pressure drop and replacement and alteration in wall rocks will result in the deposition and enrichment of W, Mo and other metals in different stages and structural-lithologic positions.
Key wordsTungsten   Aqueous vapor   Solubility   Hydrated species   Gaseous transport   Porphyry-type tungsten deposit   
收稿日期: 2014-12-30;
基金资助:

国家自然科学基金项目(编号: 40373036)和国家"305"项目(编号: 2011BAB06B02-03)资助

作者简介: 张生,男,1967年10月生,博士,副研究员,地球化学专业。E-mail:szhang@gig.ac.cn
引用本文:   
. 2015, 钨的气态迁移与岩浆—热液成矿作用:实验研究及其成矿学意义. 地质科学, 50(3): 898-910.
. Gaseous transport and magmatic-hydrothermal mineralization of tungsten: Experimental study and its metallogenic implications[J]. Chinese Journal of Geology, 2015, 50(3): 898-910.
 
没有本文参考文献
[1] 丁嘉鑫 陈衍景 韩春明 肖文交 邓小华 王忠梅. 甘肃北山钨矿床时空分布、矿床类型及成矿动力学背景[J]. 地质科学, 2019, 54(4): 1349-1369.
[2] 杨庆坤 宣璞琰 张小亮 周万蓬 曲宏健. 赣中大王山钨多金属矿床流体包裹体及 H-O-S 同位素特征[J]. 地质科学, 2017, 52(4): 1282-1296.
[3] 顾雪祥, 刘建明, Oskar Schulz, Franz Vavtar, 郑明华. 湖南沃溪钨锑金建造矿床同生成因的微量元素和硫同位素证据[J]. 地质科学, 2004, (3): 424-439,415.
[4] 徐晓春, 岳书仓. 粤东锡(钨、铜)多金属矿床的成矿物质来源和成矿作用[J]. 地质科学, 1999, (1): 78-89.
[5] 柳少波, 王联魁. 莲花山斑岩型钨-金矿床蚀变矿化过程中元素迁移定量研究[J]. 地质科学, 1998, (1): 102-114.
[6] 张毅刚. 人造气液包裹体方法及其在研究热液性质中的应用[J]. 地质科学, 1992, (2): 141-148.
 
版权所有 © 2009-2017 《地质科学》编辑部
地址:北京9825信箱  邮政编码:100029
电话:010-82998109  010-82998115