西藏阿里地区冈底斯花岗岩体的热年代学特征及其构造意义

莫亚思, 王世锋, 王超. 西藏阿里地区冈底斯花岗岩体的热年代学特征及其构造意义[J]. 地质科学, 2014, 49(3): 965-981. doi: 10.3969/j.issn.0563-5020.2014.03.021
引用本文: 莫亚思, 王世锋, 王超. 西藏阿里地区冈底斯花岗岩体的热年代学特征及其构造意义[J]. 地质科学, 2014, 49(3): 965-981. doi: 10.3969/j.issn.0563-5020.2014.03.021
Mo Yasi, Wang Shifeng, Wang Chao. The chronological characteristics of the Gangdese granite in the Ali area and its tectonic significance[J]. Chinese Journal of Geology, 2014, 49(3): 965-981. doi: 10.3969/j.issn.0563-5020.2014.03.021
Citation: Mo Yasi, Wang Shifeng, Wang Chao. The chronological characteristics of the Gangdese granite in the Ali area and its tectonic significance[J]. Chinese Journal of Geology, 2014, 49(3): 965-981. doi: 10.3969/j.issn.0563-5020.2014.03.021

西藏阿里地区冈底斯花岗岩体的热年代学特征及其构造意义

详细信息
    作者简介:

    莫亚思,女,1989年9月,硕士研究生,构造地质学专业。E-mail:544569601@qq.com

    通讯作者: 王世锋,男,1970年2月,博士,研究员,构造地质学专业。E-mail:wsf@cags.ac.cn,wsf@itpcas.ac.cn
  • 中图分类号: P542;P597

The chronological characteristics of the Gangdese granite in the Ali area and its tectonic significance

More Information
    Corresponding author: Wang Shifeng
  • 冈底斯花岗岩带是沿雅鲁藏布江北侧近东西向展布的一条长约2 500 km、宽100~300 km的巨型岩浆岩带。在阿里冈底斯山主峰岗仁波齐峰附近,冈底斯花岗岩体受到多期断裂活动的影响,特别受喜马拉雅大反向断裂和喀喇昆仑断裂活动的改造,造成断裂和岩体的关系出现很多复杂的情况,一些研究者把在北阿伊拉日居山分布的32~25 Ma的花岗岩作为喀喇昆仑断裂活动引起的同构造花岗岩,并把此年龄段归结为断层活动年龄,从而引起了极大的争论。本文的锆石U-Pb年龄指示了岗仁波齐峰地区的冈底斯花岗岩是由110 Ma、60 Ma和50 Ma的3期花岗岩组成,而韧性剪切带内的锆石年龄与附近未变形岩石内的锆石年龄一致,表明锆石的形态并未受到断裂活动的影响。韧性剪切带内云母的氩氩年龄为12 Ma左右,而周围未变形花岗岩的云母氩氩年龄在60~50 Ma左右,由此表明喀喇昆仑断裂在岗仁波齐峰地区是12 Ma开始活动的。由于研究区内韧性剪切带中的变形花岗岩并没有记录32~25 Ma这期热事件,由此排除了断裂在狮泉河—门士一线是32~25 Ma开始活动的可能性。
  • 加载中
  • [1]

    西藏自治区地质矿产局. 1993. 西藏自治区区域地质志. 北京:地质出版社. 1—707.

    [2]

    Bureau of Geology and Mineral Resource of Xizang Autonomous Region. 1993. Regional Geology of Xizang Autonomous Region. Beijing:Geological Publishing House. 1—707.

    [3]

    纪伟强, 吴福元, 钟孙霖等. 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因. 中国科学(D辑), 39 (7): 849—871.

    [4]

    Ji Weiqiang,Wu Fuyuan,Zhong Sunlin et al. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith,southern Tibet. Science in China(Series D), 52 (9): 1240—1261.

    [5]

    Chung S L,Liu D Y,Ji J Q et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31 (11): 1021—1024.

    [6]

    Chung S L,Chu M F,Zhang Y Q et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Science Review, 68 (3—4): 173—196.

    [7]

    Dunlap W J,Weinberg R F and Searle M P. 1998. Karakorum fault zone rocks cool in two phases. Geological Society of London Journal, 155: 9903—9912.

    [8]

    Harrison T M,Yin A,Grove M et al. 2000. The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research, 105 (B8): 19211—19230.

    [9]

    Hou Z Q,Gao Y F,Qu X M et al. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220 (1—2): 139—155.

    [10]

    Lacassin R,Valli F,Arnaud N et al. 2004. Large-scale geometry,offset and kinematic evolution of the Karakorum fault,Tibet. Earth and Planetary Science Letters, 219 (3—4): 255—269.

    [11]

    Leloup H P,Weinberg F R,Mukherjee K B et al. 2013. Comment on "Displacement along the Karakoram fault,NW Himalaya,estimated from LA-ICP-MS U-Pb dating of offset geologic markers" published by Shifeng Wang et al.in EPSL, 2012. Earth and Planetary Science Letters, 363: 242—245.

    [12]

    Li X H,Liu Y,Li Q L et al. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry,Geophysics,Geosystems, 10 (4):Q04010.

    [13]

    Ludwig K R. 2001. Users Manual for Isoplot/Ex Rev. 2.49. A Geological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, (1a). 1—56.

    [14]

    Miller C,Schuster R,Klotzli U et al. 2000. Late Cretaceous-Tertiary magmatic and tectonic events in the Transhimalaya batholith(Kailas area,SW Tibet). Schweizerische Mineralogische und Petrographische Mitteilungen, 80 (1): 1—20.

    [15]

    Mo X X,Zhao Z D,Deng J F et al. 2006. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan Plateau:Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow. Geological Society of America Special Paper, 409: 507—530.

    [16]

    Murphy M A,Yin A,Kapp P et al. 2000. Southward propagation of the Karakorum fault system into Southwest Tibet:Timing and magnitude of slip. Geology, 28 (5): 451—454.

    [17]

    Murphy M A,Sanchez V and Taylor M H. 2010. Syncollisional extension along the India-Asia suture zone,south-central Tibet:Implications for crustal deformation of Tibet. Earth and Planetary Science Letters, 290 (3—4): 233—243.

    [18]

    Slma J,Koler J,Condon D J et al. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249 (1—2): 1—35.

    [19]

    Scharer U,Xu R H and Allegre C J. 1984. U-Pb geochronology of Gangdese(Transhimalaya)plutonism in the Lhasa-Xigaxe region,Tibet. Earth and Planetary Science Letters, 69: 311—320

    [20]

    Searle M P and Phillips R J. 2004. A comment on "Large-scale geometry,offset,and kinematic evolution of the Karakoram fault,Tibet" by R. Lacassin et al. (Earth Planet. Sci. Lett. 219(2004)255-69). Earth and Planetary Science Letters, 229 (1—2): 155—158.

    [21]

    Steiger R H and Jger E. 1977. Subcommission on geochronology:Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36 (3): 359—362.

    [22]

    Streule M J,Phillips R J,Searle M P et al. 2009. Evolution and chronology of the Pangong metamorphic complex adjacent to the Karakoram fault,Ladakh: Constraints from thermobarometry,metamorphic modelling and U-Pb geochronology. Journal of the Geological Society, 166: 919—932.

    [23]

    Valli F,Arnaud N,Leloup H P et al. 2007. Twenty million years of continuous deformation along the Karakorum fault,western Tibet:A thermochronological analysis. Tectonics, 26 (4):TC4004.

    [24]

    Valli F,Leloup P H,Paquette J L et al. 2008. New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault. Tectonics, 27 (5):TC5007.

    [25]

    Wang S F,Blisniuk P,Kempf O et al. 2008. The Basin-range system along the south segment of the Karakorum fault zone,Tibet. International Geology Review, 50 (2): 121—134.

    [26]

    Wang S F,Fang X M,Lai Q Z et al. 2009. New radiometric dating constrains the time for initiation of the Karakorum fault zone(KFZ),SW Tibet. Tectonophysics, 475 (3): 503—513.

    [27]

    Wang S F,Wang E,Fang X M et al. 2011. U-Pb SHRIMP and40 Ar/39 Ar ages constrain the deformation history of the Karakoram fault zone(KFZ),SW Tibet. Tectonophysics, 509 (3—4): 208—217.

    [28]

    Wang S F,Wang C,Phillips R J et al. 2012. Displacement along the Karakoram fault,NW Himalaya,estimated from LA-ICP-MS U-Pb dating of offset geologic markers. Earth and Planet Science Letters, 337-338: 156—163.

    [29]

    Wang S F,Murphy M A,Phillips R J et al. 2013. Reply to comment on "Displacement along the Karakoram fault,NW Himalaya,estimated from LA-ICPMS U-Pb dating of offset geologic markers" published by Leloup et al.in EPSL, 2013. Earth and Planetary Science Letters, 363: 246—248.

    [30]

    Yin A,Harrison T M,Murphy M A et al. 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geological Society of America Bulletin, 111 (11): 1644—1664.

  • 加载中
计量
  • 文章访问数:  2545
  • PDF下载数:  809
  • 施引文献:  0
出版历程
收稿日期:  2013-05-16
修回日期:  2013-08-31
刊出日期:  2014-07-25

目录