类地行星热物理条件与热演化影响因素分析——以火星地幔热柱演化为例

张健. 类地行星热物理条件与热演化影响因素分析——以火星地幔热柱演化为例[J]. 地质科学, 2014, 49(3): 739-753. doi: 10.3969/j.issn.0563-5020.2014.03.003
引用本文: 张健. 类地行星热物理条件与热演化影响因素分析——以火星地幔热柱演化为例[J]. 地质科学, 2014, 49(3): 739-753. doi: 10.3969/j.issn.0563-5020.2014.03.003
Zhang Jian. The study of the inner thermal physical conditions and their effect on the thermal evolution of terrestrial planets:An example for Martian mantle plume evolution[J]. Chinese Journal of Geology, 2014, 49(3): 739-753. doi: 10.3969/j.issn.0563-5020.2014.03.003
Citation: Zhang Jian. The study of the inner thermal physical conditions and their effect on the thermal evolution of terrestrial planets:An example for Martian mantle plume evolution[J]. Chinese Journal of Geology, 2014, 49(3): 739-753. doi: 10.3969/j.issn.0563-5020.2014.03.003

类地行星热物理条件与热演化影响因素分析——以火星地幔热柱演化为例

详细信息
  • 中图分类号: P314;P542

The study of the inner thermal physical conditions and their effect on the thermal evolution of terrestrial planets:An example for Martian mantle plume evolution

  • 太阳系内类地行星具有相似的岩石层包围金属核的圈层结构,在行星幔的热演化历史起源方面具有同时性和同源性,并且都在早期变形重力位能加热的基础上随放射性热能衰减而冷却。但是,由于半径、密度、粘度以及表层构造属性等物理条件的差异,其热演化历史各具特色。依据基本的热对流和热传导方程,我们计算分析了类地行星热物理条件差异对行星幔热演化历史的影响。计算表明,类地行星热演化的早期,行星幔热对流是主要的散热方式。半径较大的行星表面热流密度大,平均散热量也大。半径较小的行星内部温差小,粘滞系数高,对流能力低,提早进入传导散热状态,且传导散热的岩石层也比大行星厚。不同边界层热物理条件下,类地行星幔热演化历史会分别出现逐渐冷却的平稳式、包含热柱上涌的波动式、行星幔幕次翻转的周期式等特点不同的热演化过程。火星内部曾经存在的地幔热柱构造与火星地幔热动力学演化过程密切相关。我们从火星地幔热动力学演化模型出发,定量计算与地幔热柱构造演化相关的地幔热动力学演化特征,通过三维球壳数值模拟,研究了火星地幔热演化历史上可能存在的热柱活动造成的火星热演化历史的非单调变化,火星地幔对流环结构随时间的演变方式,以及与边界相关的地幔热柱对火星地形的影响。
  • 加载中
  • [1]

    张 健, 石耀霖. 1998. 火星和月球热历史的参量化模型研究. 地球物理学报, 41 (6): 763—771.

    [2]

    Zhang Jian and Shi Yaolin. 1998. Parameterized model on thermal evolution of Mars and Moon. Acta Geophysica Sinica, 41 (6): 763—771.

    [3]

    张 健, 石耀霖. 2007. 金星非单调冷却热演化历史分析. 地球物理学报, 50 (1): 146—152.

    [4]

    Zhang Jian and Shi Yaolin. 2007. Analysis of non-monotony cooling on the thermal evolution history of Venus. Chinese Journal of Geophysics, 50 (1): 146—152.

    [5]

    Anderson D L. 2001. Geophysics-top-down tectonics?Science, 293: 2016—2018.

    [6]

    Breuer D and Spohn T. 1993. Cooling of the Earth, Urey ratios and the problem of potassium in the core. Geophysical Research Letters, 20 (15): 1655—1658.

    [7]

    Butler S and Peltier W R. 1997. Internal thermal boundary layer stability in phase transition modulated convection. Journal of Geophysical Research, 102 (B2): 2731—2749.

    [8]

    Carr M and Head J. 2010. Geologic history of Mars. Earth and Planetary Science Letters, 294 (3): 185—203.

    [9]

    Christensen U R. 1985. Thermal evolution models for the Earth. Journal of Geophysical Research, 90 (B4): 2995—3007.

    [10]

    Davies G F. 1980. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. Journal of Geophysical Research, 85 (B5): 2517—2530.

    [11]

    Davies G F. 1995. Punctuated tectonic evolution of the Earth. Earth and Planetary Science Letters, 136 (3—4): 363—379.

    [12]

    Fairen A G and Dohm J M. 2004. Age and origin of the lowlands of Mars. Icarus, 168 (2): 277—284.

    [13]

    Frey H V. 1979. Thaumasia: A fossilized early forming Tharsis uplift. Journal of Geophysical Research, 84 (B3): 1009—1023.

    [14]

    Frey H V. 2006. Impact constraints on, and a chronology for, major events in early Mars history. Journal of Geophysical Research, 111 (E8): E08S91.

    [15]

    Gold R E, Solomon S C and McNutt Jr R L. 2001. The Messenger mission to Mercury: Scientific payload. Planetary and Space Science, 49 (14—15): 1467—1479.

    [16]

    Grott M, Hauber E, Werner S C et al. 2005. High heat flux on ancient Mars: Evidence from rift flank uplift at Coracis Fossae. Geophysical Research Letters, 32 (21): L21201.

    [17]

    Harder H and Christensen U R. 1996. A one-plume model of Martian mantle convection. Nature, 380 (6574): 507—509.

    [18]

    Hartmann W K and Neukum G. 2001. Cratering chronology and the evolution of Mars. Space Science Reviews, 96: 165—194.

    [19]

    Head J W. 1990. Surfaces of the terrestrial planets. In: Beatty J K and Chaikin A(Eds.). The New Solar System. 3rd ed. New York: Sky Publishing Co. 77—90.

    [20]

    Hinners N W. 1990. The golden age of solar-system exploration. In: Beatty J K and Chaikin A(Eds.). The New Solar System. 3rd ed. New York: Sky Publishing Co. 3—14.

    [21]

    Hirth G and Kohstedt D Ⅰ. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144 (1—2): 93—108.

    [22]

    Honda S. 1995. A simple parameterized model of Earth's thermal history with the transition from layered to whole mantle convection. Earth and Planetary Science Letters, 131 (3—4): 357—369.

    [23]

    Hynek B M, Robbins S J, Šrámek O et al. 2011. Geological evidence for a migrating Tharsis plume on early Mars. Earth and Planetary Science Letters, 310 (3—4): 327—333.

    [24]

    Johnson C L and Phillips R J. 2005. Evolution of the Tharsis region of Mars: Insights from magnetic field observations. Earth and Planetary Science Letters, 230 (3—4): 241—254.

    [25]

    McKenzie D and Richter F M. 1981. Parameterized thermal convection in a layered region and the thermal history of the Earth. Journal of Geophysical Research, 86 (B12): 11667—11680.

    [26]

    Mège D and Masson P. 1996. A plume tectonics model for the Tharsis province, Mars. Planetary and Space Science, 44 (12): 1499—1546.

    [27]

    Neukum G, Jaumann R, Hoffmann H et al. 2004. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432 (7020): 971—979.

    [28]

    Nimmo F and Stevenson D J. 2000. Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal of Geophysical Research, 105 (E5): 11969—11979.

    [29]

    Nimmo F and Tanaka K. 2005. Early crustal evolution of Mars. Annual Review of Earth and Planetary Sciences, 33: 133—161.

    [30]

    Nimmo F, Hart S D, Korycansky D G et al. 2008. Implications of an impact origin for the martian hemispheric dichotomy. Nature, 453 (7199): 1220—1223.

    [31]

    Pater I D and Lissauer J J. 2001. Planetary Sciences. New York: Cambridge University Press. 1—663.

    [32]

    Roberts J H and Zhong S. 2007. The cause for the north-south orientation of the crustal dichotomy and the equatorial location of Tharsis on Mars. Icarus, 190 (1): 24—31.

    [33]

    Schubert G, Stevenson D and Cassen P. 1980. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. Journal of Geophysical Research, 85 (B5): 2531—2538.

    [34]

    Schubert G and Spohn T. 1981. Two-layer mantle convection and the depletion of radioactive elements in the lower mantle. Geophysical Research Letters, 8 (9): 951—954.

    [35]

    Schubert G, Bercovici D and Glatzmaier G A. 1990. Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection. Journal of Geophysical Research, 95 (B9): 14105—14129.

    [36]

    Schubert G, Turcotte D L and Olson P. 2001. Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press. 130, 607, 614, 635.

    [37]

    Schumacher S and Breuer D. 2006. Influence of a variable thermal conductivity on the thermochemical evolution of Mars. Journal of Geophysical Research, 111 (E2):E02006.

    [38]

    Sharpe H N and Peltier W R. 1978. Parameterized mantle convection and the Earth's thermal history. Geophysical Research Letters, 5 (9): 737—740.

    [39]

    Sleep N H. 1994. Martian plate tectonics. Journal of Geophysical Research, 99 (E3): 5639—5665.

    [40]

    Sleep N H. 2000. Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research, 105 (E7): 17563—17578.

    [41]

    Solomatov V S. 1995. Scaling of temperature-and stress-dependent viscosity convection. Physics of Fluids, 7 (2): 266—274.

    [42]

    Solomon S C, Aharonson O, Aurnou J M et al. 2005. New perspectives on ancient Mars. Science, 307 (5713): 1214—1220.

    [43]

    Spohn T and Schubert G. 1982. Modes of mantle convection and the removal of heat from the Earth's interior. Journal of Geophysical Research, 87 (B6): 4682—4696.

    [44]

    rmek O and Zhong S. 2010. Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis?Journal of Geophysical Research, 115 (E9): E09010.

    [45]

    rmek O and Zhong S. 2012. Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration. Journal of Geophysical Research, 117 (E1): E01005.

    [46]

    Stacey F D. 1980. The cooling Earth: A reappraisal. Physics of the Earth and Planetary Interiors, 22 (2): 89—96.

    [47]

    Stevenson D J. 1989. Formation and early evolution of the Earth. In: Peltier W R(Ed.). Mantle Convection: Plate Tectonics and Global Dynamics. New York: Gordon and Breach Science Publishers. 817—873.

    [48]

    Stevenson D J. 2003. Styles of mantle convection and their influence on planetary evolution. Geoscience, 335 (1): 99—111.

    [49]

    Stevenson D J, Spohn T and Schubert G. 1983. Magnetism and thermal evolution of the terrestrial planets. Icarus, 54 (3): 466—489.

    [50]

    Turcotle D L. 1980. On the thermal evolution of the Earth. Earth and Planetary Science Letters, 48 (1): 53—58

    [51]

    Turcotte D L. 1993. An episodic hypothesis for Venusian tectonics. Journal of Geophysical Research, 98 (E9): 17061—17068.

    [52]

    Turcotle D L and Schubert G. 1982. Geodynamics. New York: Wiley. 1—456.

    [53]

    Weertman J P and Weertman J R. 1975. High temperature creep of rock and mantle viscosity. Annual Review of Earth and Planetary Sciences, 3: 293—315.

    [54]

    Wilson L and Head J W. 2002. Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: Models and implications. Journal of Geophysical Research, 107 (E8): doi: 1029/2001JE001593.

    [55]

    Zhong S. 2009. Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nature Geoscience, 2: 19—23.

    [56]

    Zhong S and Zuber M. 2001. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth and Planetary Science Letters, 189 (1—2): 75—84.

    [57]

    Zhong S and Roberts J H. 2003. On the support of the Tharsis Rise on Mars. Earth and Planetary Science Letters, 214 (1—2): 1—9.

    [58]

    Zuber M T. 2001. The crust and mantle of Mars. Nature, 412 (6843): 220—227.

    [59]

    Zuber M T, Solomon S C, Phillips R J et al. 2000. Internal structure and early thermal evolution of Mars from Mars global surveyor topography and gravity. Science, 287 (5459): 1788—1793.

  • 加载中
计量
  • 文章访问数:  1859
  • PDF下载数:  617
  • 施引文献:  0
出版历程
收稿日期:  2014-01-16
修回日期:  2014-05-07
刊出日期:  2014-07-25

目录